Borack Michael S, Dickinson Jared M, Fry Christopher S, Reidy Paul T, Markofski Melissa M, Deer Rachel R, Jennings Kristofer, Volpi Elena, Rasmussen Blake B
Division of Rehabilitation Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA.
Department of Nutrition and Metabolism, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1124, USA.
Nutr Metab (Lond). 2021 Jun 12;18(1):61. doi: 10.1186/s12986-021-00585-w.
Previous work in HEK-293 cells demonstrated the importance of amino acid-induced mTORC1 translocation to the lysosomal surface for stimulating mTORC1 kinase activity and protein synthesis. This study tested the conservation of this amino acid sensing mechanism in human skeletal muscle by treating subjects with chloroquine-a lysosomotropic agent that induces in vitro and in vivo lysosome dysfunction.
mTORC1 signaling and muscle protein synthesis (MPS) were determined in vivo in a randomized controlled trial of 14 subjects (10 M, 4 F; 26 ± 4 year) that ingested 10 g of essential amino acids (EAA) after receiving 750 mg of chloroquine (CHQ, n = 7) or serving as controls (CON, n = 7; no chloroquine). Additionally, differentiated C2C12 cells were used to assess mTORC1 signaling and myotube protein synthesis (MyPS) in the presence and absence of leucine and the lysosomotropic agent chloroquine.
mTORC1, S6K1, 4E-BP1 and rpS6 phosphorylation increased in both CON and CHQ 1 h post EAA ingestion (P < 0.05). MPS increased similarly in both groups (CON, P = 0.06; CHQ, P < 0.05). In contrast, in C2C12 cells, 1 mM leucine increased mTORC1 and S6K1 phosphorylation (P < 0.05), which was inhibited by 2 mg/ml chloroquine. Chloroquine (2 mg/ml) was sufficient to disrupt mTORC1 signaling, and MyPS.
Chloroquine did not inhibit amino acid-induced activation of mTORC1 signaling and skeletal MPS in humans as it does in C2C12 muscle cells. Therefore, different in vivo experimental approaches are required for confirming the precise role of the lysosome and amino acid sensing in human skeletal muscle. Trial registration NCT00891696. Registered 29 April 2009.
先前在人胚肾293(HEK-293)细胞中的研究表明,氨基酸诱导的哺乳动物雷帕霉素靶蛋白复合物1(mTORC1)转位至溶酶体表面对于刺激mTORC1激酶活性和蛋白质合成具有重要意义。本研究通过用氯喹(一种溶酶体亲和剂,可诱导体内外溶酶体功能障碍)处理受试者,来测试这种氨基酸感应机制在人类骨骼肌中的保守性。
在一项随机对照试验中,对14名受试者(10名男性,4名女性;26±4岁)进行体内mTORC1信号传导和肌肉蛋白质合成(MPS)测定。这些受试者在接受750毫克氯喹(CHQ,n = 7)后摄入10克必需氨基酸(EAA),或作为对照(CON,n = 7;未服用氯喹)。此外,使用分化的C2C12细胞评估在有或无亮氨酸及溶酶体亲和剂氯喹存在的情况下mTORC1信号传导和肌管蛋白质合成(MyPS)。
在摄入EAA后1小时,CON组和CHQ组的mTORC1、核糖体蛋白S6激酶1(S6K1)、真核翻译起始因子4E结合蛋白1(4E-BP1)和核糖体蛋白S6(rpS6)磷酸化均增加(P < 0.05)。两组的MPS均有类似增加(CON组,P = 0.06;CHQ组,P < 0.05)。相比之下,在C2C12细胞中,1毫摩尔亮氨酸增加了mTORC1和S6K1磷酸化(P < 0.05),而这被2毫克/毫升氯喹所抑制。氯喹(2毫克/毫升)足以破坏mTORC1信号传导和MyPS。
氯喹在人体中并未像在C2C12肌肉细胞中那样抑制氨基酸诱导的mTORC1信号传导激活和骨骼肌MPS。因此,需要不同的体内实验方法来确认溶酶体和氨基酸感应在人类骨骼肌中的精确作用。试验注册编号:NCT00891696。于2009年4月29日注册。