Department of Public Health, University of Naples Federico II, Naples, Italy.
School of Specialization in Medical Physics, University of Naples Federico II, Naples, Italy.
Crit Rev Oncol Hematol. 2021 Jul;163:103394. doi: 10.1016/j.critrevonc.2021.103394. Epub 2021 Jun 11.
The cancer secretome is a valuable reservoir of cancer biomarkers. Besides containing circulating tumor cells, extracellular vesicles, and proteins, it is also rich in circulating tumor DNA (ctDNA)-a subpopulation of cell free DNA. The most efficient technology to capture ctDNA is next generation sequencing (NGS). Indeed, this analysis enables the identification of both quantitative (e.g., mutant allelic fraction - MAF) and qualitative (e.g., the variant type) information. Strikingly, by calculating these data in relation to time, cytopathologists can decodify and graphically report the ctDNA "message", which may help to diagnose cancer, define treatment, and monitor disease evolution. In this paper, we report the most compelling evidence steadily accumulating on the successful application of NGS-based ctDNA analysis in cancer diagnosis, treatment decision, and monitoring of cancer progression. We also propose a mathematical model that calculates MAF evolution in relation to time.
癌症分泌组是癌症生物标志物的宝贵资源库。除了含有循环肿瘤细胞、细胞外囊泡和蛋白质外,它还富含循环肿瘤 DNA(ctDNA)——一种无细胞 DNA 的亚群。捕获 ctDNA 最有效的技术是下一代测序(NGS)。实际上,这种分析可以识别定量(例如,突变等位基因分数-MAF)和定性(例如,变体类型)信息。引人注目的是,通过计算这些与时间相关的数据,细胞病理学家可以对 ctDNA“信息”进行解码和图形化报告,这有助于诊断癌症、确定治疗方案和监测疾病进展。在本文中,我们报告了越来越多的有说服力的证据,证明基于 NGS 的 ctDNA 分析在癌症诊断、治疗决策和监测癌症进展方面的成功应用。我们还提出了一个数学模型,用于计算 MAF 随时间的演变。