Suppr超能文献

鲸目动物的心率与呼吸频率和体质量的比例关系。

Scaling of heart rate with breathing frequency and body mass in cetaceans.

机构信息

Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 28516, USA.

Pratt School of Engineering, Duke University, Durham, NC 27708, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2021 Aug 2;376(1830):20200223. doi: 10.1098/rstb.2020.0223. Epub 2021 Jun 14.

Abstract

Plasticity in the cardiac function of a marine mammal facilitates rapid adjustments to the contrasting metabolic demands of breathing at the surface and diving during an extended apnea. By matching their heart rate () to their immediate physiological needs, a marine mammal can improve its metabolic efficiency and maximize the proportion of time spent underwater. Respiratory sinus arrhythmia (RSA) is a known modulation of that is driven by respiration and has been suggested to increase cardiorespiratory efficiency. To investigate the presence of RSA in cetaceans and the relationship between , breathing rate () and body mass (), we measured simultaneous and in five cetacean species in human care. We found that a higher was associated with a higher mean instantaneous (i) and minimum i of the RSA. By contrast, scaled inversely with such that larger animals had lower mean and minimum is of the RSA. There was a significant allometric relationship between maximum i of the RSA and , but not , which may indicate that this parameter is set by physical laws and not adjusted dynamically with physiological needs. RSA was significantly affected by and was greatly reduced with small increases in . Ultimately, these data show that surface s of cetaceans are complex and the patterns we observed are controlled by several factors. We suggest the importance of considering RSA when interpreting measurements and particularly how may drive changes that are important for efficient gas exchange. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.

摘要

海洋哺乳动物心脏功能的可塑性使其能够迅速适应呼吸和长时间潜水等代谢需求的变化。通过将心率()与其即时生理需求相匹配,海洋哺乳动物可以提高其代谢效率,并最大限度地增加水下停留时间。呼吸窦性心律失常(RSA)是一种已知的心率调节方式,它受呼吸驱动,并被认为可以提高心肺效率。为了研究海洋哺乳动物中是否存在 RSA 以及心率()、呼吸率()和体重()之间的关系,我们在人类护理的五种海洋哺乳动物物种中同时测量了心率和呼吸率。我们发现,较高的心率与较高的 RSA 平均瞬时心率(i)和最小 i 相关。相反,心率与呼吸率呈反比关系,即较大的动物具有较低的 RSA 平均和最小 i。RSA 的最大 i 与心率呈显著的异速关系,但与呼吸率无关,这可能表明该参数由物理定律设定,而不是根据生理需求动态调整。RSA 受心率和呼吸率的显著影响,呼吸率稍有增加就会大大降低。最终,这些数据表明,海洋哺乳动物的表面呼吸是复杂的,我们观察到的心率模式受多种因素控制。我们建议在解释心率测量结果时考虑 RSA,特别是如何通过心率变化来驱动对有效气体交换很重要的变化。本文是“自由生活动物的生理学测量(第一部分)”主题特刊的一部分。

相似文献

1
Scaling of heart rate with breathing frequency and body mass in cetaceans.
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 2;376(1830):20200223. doi: 10.1098/rstb.2020.0223. Epub 2021 Jun 14.
2
Cardiorespiratory coupling in cetaceans; a physiological strategy to improve gas exchange?
J Exp Biol. 2020 Sep 6;223(Pt 17):jeb226365. doi: 10.1242/jeb.226365.
3
Respiratory sinus arrhythmia in the immediate post-exercise period: correlation with breathing-specific heart rate.
Eur J Appl Physiol. 2018 Jul;118(7):1397-1406. doi: 10.1007/s00421-018-3871-6. Epub 2018 Apr 27.
4
The magnitude of respiratory sinus arrhythmia of a large mammal (the horse) is like that of humans.
Respir Physiol Neurobiol. 2019 Jan;259:170-172. doi: 10.1016/j.resp.2018.09.006. Epub 2018 Sep 18.
5
Respiratory sinus arrhythmia and submersion bradycardia in bottlenose dolphins ().
J Exp Biol. 2021 Jan 7;224(Pt 1):jeb234096. doi: 10.1242/jeb.234096.
6
Respiratory sinus arrhythmia in spontaneously breathing, unanesthetized newborn and adult Wistar rats.
Respir Physiol Neurobiol. 2024 Mar;321:104207. doi: 10.1016/j.resp.2023.104207. Epub 2023 Dec 29.
7
Respiratory sinus arrhythmia during a mental attention task: the role of breathing-specific heart rate.
Respir Physiol Neurobiol. 2020 Jan;272:103331. doi: 10.1016/j.resp.2019.103331. Epub 2019 Oct 16.
8
Thinking about breathing: Effects on respiratory sinus arrhythmia.
Respir Physiol Neurobiol. 2016 Mar;223:28-36. doi: 10.1016/j.resp.2015.12.004. Epub 2015 Dec 24.
9
Breath-by-breath analysis of respiratory sinus arrhythmia in dogs.
Respir Physiol Neurobiol. 2021 Dec;294:103776. doi: 10.1016/j.resp.2021.103776. Epub 2021 Aug 15.
10
Whose clock makes yours tick? How maternal cardiorespiratory physiology influences newborns' heart rate variability.
Biol Psychol. 2015 May;108:132-41. doi: 10.1016/j.biopsycho.2015.04.001. Epub 2015 Apr 11.

引用本文的文献

2
Cardiorespiratory adaptations in small cetaceans and marine mammals.
Exp Physiol. 2024 Mar;109(3):324-334. doi: 10.1113/EP091095. Epub 2023 Nov 15.
3
Body size and temperature affect metabolic and cardiac thermal tolerance in fish.
Sci Rep. 2023 Oct 19;13(1):17900. doi: 10.1038/s41598-023-44574-w.
4
Cardiorespiratory coupling in the bottlenose dolphin ().
Front Physiol. 2023 Sep 21;14:1234432. doi: 10.3389/fphys.2023.1234432. eCollection 2023.
5
Baleen whale inhalation variability revealed using animal-borne video tags.
PeerJ. 2022 Jul 20;10:e13724. doi: 10.7717/peerj.13724. eCollection 2022.
7
Near-Infrared Spectroscopy as a Tool for Marine Mammal Research and Care.
Front Physiol. 2022 Jan 17;12:816701. doi: 10.3389/fphys.2021.816701. eCollection 2021.
8
What is physiologging? Introduction to the theme issue, part 2.
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20210028. doi: 10.1098/rstb.2021.0028. Epub 2021 Jun 28.
9
Introduction to the theme issue: Measuring physiology in free-living animals.
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 2;376(1830):20200210. doi: 10.1098/rstb.2020.0210. Epub 2021 Jun 14.

本文引用的文献

1
Conditioned Variation in Heart Rate During Static Breath-Holds in the Bottlenose Dolphin ().
Front Physiol. 2020 Nov 24;11:604018. doi: 10.3389/fphys.2020.604018. eCollection 2020.
2
Respiratory sinus arrhythmia and submersion bradycardia in bottlenose dolphins ().
J Exp Biol. 2021 Jan 7;224(Pt 1):jeb234096. doi: 10.1242/jeb.234096.
3
Cardiorespiratory coupling in cetaceans; a physiological strategy to improve gas exchange?
J Exp Biol. 2020 Sep 6;223(Pt 17):jeb226365. doi: 10.1242/jeb.226365.
4
Comparative Respiratory Physiology in Cetaceans.
Front Physiol. 2020 Mar 3;11:142. doi: 10.3389/fphys.2020.00142. eCollection 2020.
5
Why whales are big but not bigger: Physiological drivers and ecological limits in the age of ocean giants.
Science. 2019 Dec 13;366(6471):1367-1372. doi: 10.1126/science.aax9044.
6
Extreme bradycardia and tachycardia in the world's largest animal.
Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25329-25332. doi: 10.1073/pnas.1914273116. Epub 2019 Nov 25.
8
Using Respiratory Sinus Arrhythmia to Estimate Inspired Tidal Volume in the Bottlenose Dolphin ().
Front Physiol. 2019 Feb 19;10:128. doi: 10.3389/fphys.2019.00128. eCollection 2019.
10
Modeling Tissue and Blood Gas Kinetics in Coastal and Offshore Common Bottlenose Dolphins, .
Front Physiol. 2018 Jul 17;9:838. doi: 10.3389/fphys.2018.00838. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验