Suppr超能文献

沿海酸化对北大西洋双壳贝类的影响:在种群背景下解读实验室反应。

Effects of coastal acidification on North Atlantic bivalves: interpreting laboratory responses in the context of populations.

作者信息

Grear J S, O'Leary C A, Nye J A, Tettelbach S T, Gobler C J

机构信息

Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, 27 Tarzwell Dr, Narragansett, RI 02882, USA.

School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794.

出版信息

Mar Ecol Prog Ser. 2020 Jan 9;633:89-104. doi: 10.3354/meps13140.

Abstract

Experimental exposure of early life stage bivalves has documented negative effects of elevated CO on survival and growth, but the population consequences of these effects are unknown. Following standard practices from population viability analysis and wildlife risk assessment, we substituted laboratory-derived stress-response relationships into baseline population models of and . The models were constructed using inverse demographic analyses with time series of size-structured field data in NY, USA, whereas the stress-response relationships were developed using data from a series of previously published laboratory studies. We used stochastic projection methods and diffusion approximations of extinction probability to estimate cumulative risk of 50% population decline during ten-year population projections at 1, 1.5 and 2 times ambient CO levels. Although the population exhibited higher growth in the field data (12% per year) than the declining population (-8% per year), cumulative risk was high for in the first ten years due to high variance in the stochastic growth rate estimate (log λ = -0.02, σ = 0.24). This ten-year cumulative risk increased from 69% to 94% and >99% at 1.5 and 2 times ambient scenarios. For (log λ = -0.09, σ = 0.01), ten-year risk was 81%, 96% and >99% at 1, 1.5 and 2 times ambient CO, respectively. These estimates of risk could be improved with detailed consideration of harvest effects, disease, restocking, compensatory responses, other ecological complexities, and the nature of interactions between these and other effects that are beyond the scope of available data. However, results clearly indicate that early life stage responses to plausible levels of CO enrichment have the potential to cause significant increases in risk to these marine bivalve populations.

摘要

对双壳贝类幼体阶段进行实验暴露已证明,二氧化碳浓度升高会对其生存和生长产生负面影响,但这些影响对种群的后果尚不清楚。按照种群生存力分析和野生动物风险评估的标准做法,我们将实验室得出的应激反应关系代入了[具体物种1]和[具体物种2]的基线种群模型。这些模型是通过对美国纽约大小结构的野外数据时间序列进行逆种群统计学分析构建的,而应激反应关系则是根据一系列先前发表的实验室研究数据得出的。我们使用随机投影方法和灭绝概率的扩散近似值,来估计在1倍、1.5倍和2倍环境二氧化碳水平下,十年种群预测期间种群数量下降50%的累积风险。尽管在野外数据中,[具体物种1]种群表现出较高的增长率(每年12%),而[具体物种2]种群呈下降趋势(每年-8%),但由于随机增长率估计值的高方差(对数λ = -0.02,σ = 0.24),[具体物种1]在前十年的累积风险很高。在1.5倍和2倍环境情景下,这种十年累积风险从69%增加到94%和>99%。对于[具体物种2](对数λ = -0.09,σ = 0.01),在1倍、1.5倍和2倍环境二氧化碳水平下,十年风险分别为81%、96%和>99%。通过详细考虑捕捞影响、疾病、放流、补偿反应、其他生态复杂性以及这些与其他影响之间相互作用的性质(这些超出了现有数据的范围),这些风险估计可能会得到改善。然而,结果清楚地表明,双壳贝类幼体阶段对合理水平二氧化碳富集的反应有可能显著增加这些海洋双壳贝类种群的风险。

相似文献

3
Interactive effects of elevated temperature and CO2 levels on energy metabolism and biomineralization of marine bivalves Crassostrea virginica and Mercenaria mercenaria.
Comp Biochem Physiol A Mol Integr Physiol. 2013 Sep;166(1):101-11. doi: 10.1016/j.cbpa.2013.05.016. Epub 2013 May 21.
4
Environmental salinity modulates the effects of elevated CO2 levels on juvenile hard-shell clams, Mercenaria mercenaria.
J Exp Biol. 2013 Jul 15;216(Pt 14):2607-18. doi: 10.1242/jeb.082909. Epub 2013 Mar 26.
9
In situ recovery of bivalve shell characteristics after temporary exposure to elevated CO.
Limnol Oceanogr. 2020 May 12;65(10):2337-2351. doi: 10.1002/lno.11456.

引用本文的文献

1
Growth Rates for Quahogs () in a Reduced Nitrogen Environment in Narragansett Bay, RI.
Northeast Nat (Steuben). 2020 Jul;27(3):534-554. doi: 10.1656/045.027.0313. Epub 2020 Aug 27.
2
Effect of nutrient reductions on dissolved oxygen and pH: a case study of Narragansett bay.
Front Mar Sci. 2024 May 23;11:1374873. doi: 10.3389/fmars.2024.1374873.
3
New York State Climate Impacts Assessment Chapter 05: Ecosystems.
Ann N Y Acad Sci. 2024 Dec;1542(1):253-340. doi: 10.1111/nyas.15203. Epub 2024 Dec 9.
4
Local differences in robustness to ocean acidification.
Biol Open. 2024 Aug 15;13(8). doi: 10.1242/bio.060479. Epub 2024 Aug 23.
5
Geographical and seasonal patterns in the carbonate chemistry of Narragansett Bay, RI.
Reg Stud Mar Sci. 2023 Sep;62:1-14. doi: 10.1016/j.rsma.2023.102903.
6
Synoptic assessment of coastal total alkalinity through community science.
Environ Res Lett. 2021 Jan 21;16:1-14. doi: 10.1088/1748-9326/abcb39.
7
In situ recovery of bivalve shell characteristics after temporary exposure to elevated CO.
Limnol Oceanogr. 2020 May 12;65(10):2337-2351. doi: 10.1002/lno.11456.

本文引用的文献

1
Seagrass habitat metabolism increases short-term extremes and long-term offset of CO under future ocean acidification.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3870-3875. doi: 10.1073/pnas.1703445115. Epub 2018 Apr 2.
2
Naturally acidified habitat selects for ocean acidification-tolerant mussels.
Sci Adv. 2017 Apr 26;3(4):e1602411. doi: 10.1126/sciadv.1602411. eCollection 2017 Apr.
3
Effects of Co-Varying Diel-Cycling Hypoxia and pH on Growth in the Juvenile Eastern Oyster, Crassostrea virginica.
PLoS One. 2016 Aug 22;11(8):e0161088. doi: 10.1371/journal.pone.0161088. eCollection 2016.
5
Ocean acidification through the lens of ecological theory.
Ecology. 2015 Jan;96(1):3-15. doi: 10.1890/14-0802.1.
8
Ocean acidification in the coastal zone from an organism's perspective: multiple system parameters, frequency domains, and habitats.
Ann Rev Mar Sci. 2014;6:221-47. doi: 10.1146/annurev-marine-121211-172238. Epub 2013 Aug 28.
10
Ocean acidification: the other CO2 problem.
Ann Rev Mar Sci. 2009;1:169-92. doi: 10.1146/annurev.marine.010908.163834.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验