Cooley Sarah R, Rheuban Jennie E, Hart Deborah R, Luu Victoria, Glover David M, Hare Jonathan A, Doney Scott C
Ocean Conservancy, Washington, DC, United States of America; Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America.
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America.
PLoS One. 2015 May 6;10(5):e0124145. doi: 10.1371/journal.pone.0124145. eCollection 2015.
Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term factor affecting scallop populations, but in the coming decades scallops will be increasingly influenced by global environmental changes such as ocean warming and ocean acidification. In this paper, we describe an integrated assessment model (IAM) that numerically simulates oceanographic, population dynamic, and socioeconomic relationships for the U.S. commercial sea scallop fishery. Our primary goal is to enrich resource management deliberations by offering both short- and long-term insight into the system and generating detailed policy-relevant information about the relative effects of ocean acidification, temperature rise, fishing pressure, and socioeconomic factors on the fishery using a simplified model system. Starting with relationships and data used now for sea scallop fishery management, the model adds socioeconomic decision making based on static economic theory and includes ocean biogeochemical change resulting from CO2 emissions. The model skillfully reproduces scallop population dynamics, market dynamics, and seawater carbonate chemistry since 2000. It indicates sea scallop harvests could decline substantially by 2050 under RCP 8.5 CO2 emissions and current harvest rules, assuming that ocean acidification affects P. magellanicus by decreasing recruitment and slowing growth, and that ocean warming increases growth. Future work will explore different economic and management scenarios and test how potential impacts of ocean acidification on other scallop biological parameters may influence the social-ecological system. Future empirical work on the effect of ocean acidification on sea scallops is also needed.
海洋酸化是指大气中二氧化碳被海洋吸收导致的海洋化学性质的逐渐变化,它可能会对包括贝类在内的一些海洋资源产生负面影响。大西洋海扇贝(Placopecten magellanicus)支撑着美国最重要的单一物种商业渔业之一。谨慎的管理似乎是影响扇贝种群的最有力短期因素,但在未来几十年,扇贝将越来越受到全球环境变化的影响,如海洋变暖和海洋酸化。在本文中,我们描述了一个综合评估模型(IAM),该模型通过数值模拟美国商业海扇贝渔业的海洋学、种群动态和社会经济关系。我们的主要目标是通过对系统进行短期和长期的洞察,并使用简化的模型系统生成有关海洋酸化、温度上升、捕捞压力和社会经济因素对渔业的相对影响的详细政策相关信息,来丰富资源管理的讨论。该模型从目前用于海扇贝渔业管理的关系和数据入手,加入了基于静态经济理论的社会经济决策,并纳入了二氧化碳排放导致的海洋生物地球化学变化。该模型巧妙地再现了自2000年以来的扇贝种群动态、市场动态和海水碳酸盐化学。它表明,在RCP 8.5二氧化碳排放和当前捕捞规则下,假设海洋酸化通过减少补充量和减缓生长影响海扇贝,而海洋变暖则增加生长,到2050年海扇贝产量可能会大幅下降。未来的工作将探索不同的经济和管理情景,并测试海洋酸化对其他扇贝生物学参数的潜在影响可能如何影响社会生态系统。还需要未来关于海洋酸化对海扇贝影响的实证研究。