Suppr超能文献

RAMRSGL:一种用于多癌分类的稳健自适应多项回归模型。

RAMRSGL: A Robust Adaptive Multinomial Regression Model for Multicancer Classification.

机构信息

Department of Basic Science Teaching, Henan Polytechnic Institute, Nanyang, 473000 Henan, China.

College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007 Henan, China.

出版信息

Comput Math Methods Med. 2021 May 25;2021:5584684. doi: 10.1155/2021/5584684. eCollection 2021.

Abstract

In view of the challenges of the group Lasso penalty methods for multicancer microarray data analysis, e.g., dividing genes into groups in advance and biological interpretability, we propose a robust adaptive multinomial regression with sparse group Lasso penalty (RAMRSGL) model. By adopting the overlapping clustering strategy, affinity propagation clustering is employed to obtain each cancer gene subtype, which explores the group structure of each cancer subtype and merges the groups of all subtypes. In addition, the data-driven weights based on noise are added to the sparse group Lasso penalty, combining with the multinomial log-likelihood function to perform multiclassification and adaptive group gene selection simultaneously. The experimental results on acute leukemia data verify the effectiveness of the proposed method.

摘要

针对多元癌症基因表达谱数据分析中组 Lasso 惩罚方法的挑战,例如,将基因预先分组以及具有生物学可解释性等问题,我们提出了一种稳健的自适应多项逻辑回归稀疏组 Lasso 惩罚(RAMRSGL)模型。该模型采用重叠聚类策略,使用亲和传播聚类获得每个癌症基因亚型,探索每个癌症亚型的分组结构,并合并所有亚型的分组。此外,在稀疏组 Lasso 惩罚中添加基于噪声的数据驱动权重,结合多项逻辑似然函数,同时进行多分类和自适应分组基因选择。急性白血病数据的实验结果验证了所提方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eefd/8172296/1702a3b473cb/CMMM2021-5584684.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验