Turley Andrew T, Danos Andrew, Prlj Antonio, Monkman Andrew P, Curchod Basile F E, McGonigal Paul R, Etherington Marc K
Department of Chemistry, Durham University South Road Durham DH1 3LE UK
Department of Physics, Durham University South Road Durham DH1 3LE UK
Chem Sci. 2020 Jun 9;11(27):6990-6995. doi: 10.1039/d0sc02460k.
Charge transfer in organic fluorophores is a fundamental photophysical process that can be either beneficial, , facilitating thermally activated delayed fluorescence, or detrimental, , mediating emission quenching. -Alkylation is shown to provide straightforward synthetic control of the charge transfer, emission energy and quantum yield of amine chromophores. We demonstrate this concept using quinine as a model. -Alkylation causes changes in its emission that mirror those caused by changes in pH (, protonation). Unlike protonation, however, alkylation of quinine's two N sites is performed in a stepwise manner to give kinetically stable species. This kinetic stability allows us to isolate and characterize an -alkylated analogue of an 'unnatural' protonation state that is quaternized selectively at the less basic site, which is inaccessible using acid. These materials expose (i) the through-space charge-transfer excited state of quinine and (ii) the associated loss pathway, while (iii) developing a simple salt that outperforms quinine sulfate as a quantum yield standard. This -alkylation approach can be applied broadly in the discovery of emissive materials by tuning charge-transfer states.
有机荧光团中的电荷转移是一个基本的光物理过程,它既可能是有益的,即促进热激活延迟荧光,也可能是有害的,即介导发射猝灭。已表明,α-烷基化可对胺发色团的电荷转移、发射能量和量子产率提供直接的合成控制。我们以奎宁为模型来证明这一概念。α-烷基化会导致其发射发生变化,这种变化与pH值变化(即质子化)所引起的变化相似。然而,与质子化不同的是,奎宁两个氮位点的烷基化是以逐步方式进行的,从而得到动力学稳定的物种。这种动力学稳定性使我们能够分离并表征一种“非天然”质子化状态的α-烷基化类似物,该类似物在碱性较弱的位点被选择性地季铵化,而使用酸则无法实现这一点。这些材料揭示了(i)奎宁的空间电荷转移激发态和(ii)相关的损失途径,同时(iii)开发出一种比硫酸奎宁作为量子产率标准表现更优的简单盐。这种α-烷基化方法可通过调节电荷转移态广泛应用于发光材料的发现。