Suppr超能文献

通过综合生物信息学分析鉴定与骨肉瘤相关的潜在基因特征

Identification of potential gene signatures associated with osteosarcoma by integrated bioinformatics analysis.

作者信息

Jia Yutao, Liu Yang, Han Zhihua, Tian Rong

机构信息

Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China.

Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China.

出版信息

PeerJ. 2021 May 27;9:e11496. doi: 10.7717/peerj.11496. eCollection 2021.

Abstract

BACKGROUND

Osteosarcoma (OS) is the most primary malignant bone cancer in children and adolescents with a high mortality rate. This work aims to screen novel potential gene signatures associated with OS by integrated microarray analysis of the Gene Expression Omnibus (GEO) database.

MATERIAL AND METHODS

The OS microarray datasets were searched and downloaded from GEO database to identify differentially expressed genes (DEGs) between OS and normal samples. Afterwards, the functional enrichment analysis, protein-protein interaction (PPI) network analysis and transcription factor (TF)-target gene regulatory network were applied to uncover the biological function of DEGs. Finally, two published OS datasets (GSE39262 and GSE126209) were obtained from GEO database for evaluating the expression level and diagnostic values of key genes.

RESULTS

In total 1,059 DEGs (569 up-regulated DEGs and 490 down-regulated DEGs) between OS and normal samples were screened. Functional analysis showed that these DEGs were markedly enriched in 214 GO terms and 54 KEGG pathways such as pathways in cancer. Five genes (CAMP, METTL7A, TCN1, LTF and CXCL12) acted as hub genes in PPI network. Besides, METTL7A, CYP4F3, TCN1, LTF and NETO2 were key genes in TF-gene network. Moreover, Pax-6 regulated four key genes (TCN1, CYP4F3, NETO2 and CXCL12). The expression levels of four genes (METTL7A, TCN1, CXCL12 and NETO2) in GSE39262 set were consistent with our integration analysis. The expression levels of two genes (CXCL12 and NETO2) in GSE126209 set were consistent with our integration analysis. ROC analysis of GSE39262 set revealed that CYP4F3, CXCL12, METTL7A, TCN1 and NETO2 had good diagnostic values for OS patients. ROC analysis of GSE126209 set revealed that CXCL12, METTL7A, TCN1 and NETO2 had good diagnostic values for OS patients.

摘要

背景

骨肉瘤(OS)是儿童和青少年中最常见的原发性恶性骨癌,死亡率很高。本研究旨在通过对基因表达综合数据库(GEO)进行综合微阵列分析,筛选与骨肉瘤相关的新型潜在基因特征。

材料与方法

从GEO数据库中搜索并下载骨肉瘤微阵列数据集,以鉴定骨肉瘤样本与正常样本之间的差异表达基因(DEGs)。随后,进行功能富集分析、蛋白质-蛋白质相互作用(PPI)网络分析和转录因子(TF)-靶基因调控网络分析,以揭示差异表达基因的生物学功能。最后,从GEO数据库中获取两个已发表的骨肉瘤数据集(GSE39262和GSE126209),用于评估关键基因的表达水平和诊断价值。

结果

共筛选出骨肉瘤样本与正常样本之间的1059个差异表达基因(569个上调差异表达基因和490个下调差异表达基因)。功能分析表明,这些差异表达基因显著富集于214个基因本体(GO)术语和54条京都基因与基因组百科全书(KEGG)通路,如癌症相关通路。5个基因(CAMP、METTL7A、TCN1、LTF和CXCL12)在PPI网络中作为枢纽基因。此外,METTL7A、CYP4F3、TCN1、LTF和NETO2是TF-基因网络中的关键基因。此外,Pax-6调控4个关键基因(TCN1、CYP4F3、NETO2和CXCL12)。GSE39262数据集中4个基因(METTL7A、TCN1、CXCL12和NETO2)的表达水平与我们的综合分析结果一致。GSE126209数据集中2个基因(CXCL12和NETO2)的表达水平与我们的综合分析结果一致。GSE39262数据集的ROC分析显示,CYP4F3、CXCL12、METTL7A、TCN1和NETO2对骨肉瘤患者具有良好的诊断价值。GSE126209数据集的ROC分析显示,CXCL12、METTL7A、TCN1和NETO2对骨肉瘤患者具有良好的诊断价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/8164836/51ffa27c8a0f/peerj-09-11496-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验