Suppr超能文献

基于数据驱动的粉末床熔融增材制造热模型表征

Data-driven characterization of thermal models for powder-bed-fusion additive manufacturing.

作者信息

Yan Wentao, Lu Yan, Jones Kevontrez, Yang Zhuo, Fox Jason, Witherell Paul, Wagner Gregory, Liu Wing Kam

机构信息

Currently at Department of Mechanical Engineering, National University of Singapore, 117575, Singapore.

Department of Mechanical Engineering, Northwestern University, Evanston, IL 60201, United States.

出版信息

Addit Manuf. 2020;36. doi: 10.1016/j.addma.2020.101503.

Abstract

Computational modeling for additive manufacturing has proven to be a powerful tool to understand physical mechanisms, predict fabrication quality, and guide design and optimization. Varieties of models have been developed with different assumptions and purposes, and these models are sometimes difficult to choose from, especially for end-users, due to the lack of quantitative comparison and standardization. Thus, this study is focused on quantifying model uncertainty due to the modeling assumptions, and evaluating differences based on whether or not selected physical factors are incorporated. Multiple models with different assumptions, including a high-fidelity thermal-fluid flow model resolving individual powder particles, a low-fidelity heat transfer model simplifying the powder bed as a continuum material, and a semi-analytical thermal model using a point heat source model, were run with a variety of manufacturing process parameters. Experiments were performed on the National Institute of Standards and Technology (NIST) Additive Manufacturing Metrology Testbed (AMMT) to validate the models. A data analytics-based methodology was utilized to characterize the models to estimate the error distribution. The cross comparison of the simulation results reveals the remarkable influence of fluid flow, while the significance of the powder layer varies across different models. This study aims to provide guidance on model selection and corresponding accuracy, and more importantly facilitate the development of AM models.

摘要

增材制造的计算建模已被证明是一种理解物理机制、预测制造质量以及指导设计和优化的强大工具。已经开发了各种具有不同假设和目的的模型,由于缺乏定量比较和标准化,这些模型有时很难选择,尤其是对于终端用户而言。因此,本研究专注于量化建模假设导致的模型不确定性,并基于是否纳入选定的物理因素来评估差异。使用各种制造工艺参数运行了多个具有不同假设的模型,包括解析单个粉末颗粒的高保真热流体流动模型、将粉末床简化为连续材料的低保真传热模型以及使用点热源模型的半解析热模型。在美国国家标准与技术研究院(NIST)的增材制造计量试验台(AMMT)上进行了实验以验证这些模型。采用基于数据分析的方法来表征模型以估计误差分布。模拟结果的交叉比较揭示了流体流动的显著影响,而粉末层的重要性在不同模型中有所不同。本研究旨在为模型选择和相应的准确性提供指导,更重要的是促进增材制造模型的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/079c/8194192/6045f9061fb5/nihms-1686030-f0001.jpg

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验