Suppr超能文献

预测双胎妊娠<32 周早产的列线图的建立与外部验证。

Development and external validation of a nomogram for predicting preterm birth at < 32 weeks in twin pregnancy.

机构信息

Department of Obstetrics and Gynaecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, Fujian, China.

School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.

出版信息

Sci Rep. 2021 Jun 14;11(1):12430. doi: 10.1038/s41598-021-91973-y.

Abstract

The purpose of this study was to develop a dynamic model to predict the risk of spontaneous preterm birth at < 32 weeks in twin pregnancy. A retrospective clinical study of consecutively asymptomatic women with twin pregnancies from January 2017 to December 2019 in two tertiary medical centres was performed. Data from one centre were used to construct the model, and data from the other were used to evaluate the model. Data on maternal demographic characteristics, transvaginal cervical length and funnelling during 20-24 weeks were extracted. The prediction model was constructed with independent variables determined by multivariate logistic regression analyses. After applying specified exclusion criteria, an algorithm with maternal and biophysical factors was developed based on 88 twin pregnancies with a preterm birth < 32 weeks and 639 twin pregnancies with a delivery ≥ 32 weeks. It was then evaluated among 34 pregnancies with a preterm birth < 32 weeks and 252 pregnancies with a delivery ≥ 32 weeks in a second tertiary centre without specific training. The model reached a sensitivity of 80.00%, specificity of 88.17%, positive predictive value of 50.33% and negative predictive value of 96.71%; ROC characteristics proved that the model was superior to any single parameter with an AUC of 0.848 (all P < 0.005). We developed and validated a dynamic nomogram model to predict the individual probability of early preterm birth to better represent the complex aetiology of twin pregnancies and hopefully improve the prediction and indication of interventions.

摘要

本研究旨在开发一种动态模型,以预测双胎妊娠中早产风险 < 32 周。对 2017 年 1 月至 2019 年 12 月在两个三级医疗中心连续就诊的无症状双胎妊娠妇女进行了回顾性临床研究。一个中心的数据用于构建模型,另一个中心的数据用于评估模型。提取了 20-24 周时母亲人口统计学特征、经阴道宫颈长度和漏斗的资料。使用多元逻辑回归分析确定的独立变量构建预测模型。在应用特定排除标准后,根据 88 例早产 < 32 周的双胎妊娠和 639 例分娩 ≥ 32 周的双胎妊娠,制定了基于母婴和生物物理因素的算法。然后,在没有特定培训的情况下,在第二个三级中心的 34 例早产 < 32 周和 252 例分娩 ≥ 32 周的妊娠中进行了评估。该模型的敏感性为 80.00%,特异性为 88.17%,阳性预测值为 50.33%,阴性预测值为 96.71%;ROC 特征表明该模型优于任何单一参数,AUC 为 0.848(均 P < 0.005)。我们开发并验证了一种动态列线图模型,以预测早期早产的个体概率,以更好地反映双胎妊娠的复杂病因,并有望改善预测和干预指征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eaf7/8203618/3a4d683475ae/41598_2021_91973_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验