Suppr超能文献

高通量药物筛选和小分子表征的人类多能干细胞。

Human Pluripotent Stem Cells for High-Throughput Drug Screening and Characterization of Small Molecules.

机构信息

Stem Cell Translation Laboratory (SCTL), Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA.

出版信息

Methods Mol Biol. 2022;2454:811-827. doi: 10.1007/7651_2021_394.

Abstract

Human pluripotent stem cells (hPSCs), such as induced pluripotent stem cells (iPSCs), hold great promise for drug discovery, toxicology studies, and regenerative medicine. Here, we describe standardized protocols and experimental procedures that combine automated cell culture for scalable production of hPSCs with quantitative high-throughput screening (qHTS) in miniaturized 384-well plates. As a proof of principle, we established dose-response assessments and determined optimal concentrations of 12 small molecule compounds that are commonly used in the stem cell field. Multi-parametric analysis of readouts from diverse assays including cell viability, mitochondrial membrane potential, plasma membrane integrity, and ATP production was used to distinguish normal biological responses from cellular stress induced by small molecule treatment. Collectively, the establishment of integrated workflows for cell manufacturing, qHTS, high-content imaging, and data analysis provides an end-to-end platform for industrial-scale projects and should leverage the drug discovery process using hPSC-derived cell types.

摘要

人类多能干细胞(hPSCs),如诱导多能干细胞(iPSCs),在药物发现、毒理学研究和再生医学方面具有巨大的应用潜力。在这里,我们描述了标准化的方案和实验程序,这些方案和程序将自动化细胞培养与微型化 384 孔板中的高通量筛选(qHTS)相结合,用于 hPSCs 的规模化生产。作为原理验证,我们建立了剂量反应评估,并确定了 12 种常用于干细胞领域的小分子化合物的最佳浓度。通过对包括细胞活力、线粒体膜电位、质膜完整性和 ATP 产生在内的各种检测的读数进行多参数分析,可将小分子处理引起的正常生物学反应与细胞应激区分开来。总的来说,细胞制造、qHTS、高内涵成像和数据分析的集成工作流程的建立为工业规模项目提供了一个端到端平台,并且应该利用基于 hPSC 衍生细胞类型的药物发现过程。

相似文献

2
A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells.
Stem Cells Transl Med. 2015 Dec;4(12):1482-94. doi: 10.5966/sctm.2014-0275. Epub 2015 Oct 28.
5
Adapting human pluripotent stem cells to high-throughput and high-content screening.
Nat Protoc. 2013 Jan;8(1):111-30. doi: 10.1038/nprot.2012.139. Epub 2012 Dec 20.
7
Application of human pluripotent stem cells and pluripotent stem cell-derived cellular models for assessing drug toxicity.
Expert Opin Drug Metab Toxicol. 2019 Jan;15(1):61-75. doi: 10.1080/17425255.2019.1558207. Epub 2018 Dec 17.
9
A High-Throughput Screening Method to Identify Compounds Displaying Human Vascular Embryonic Toxicity.
Curr Protoc Stem Cell Biol. 2019 Sep;50(1):e93. doi: 10.1002/cpsc.93.
10
Impact of Feeding Strategies on the Scalable Expansion of Human Pluripotent Stem Cells in Single-Use Stirred Tank Bioreactors.
Stem Cells Transl Med. 2016 Oct;5(10):1289-1301. doi: 10.5966/sctm.2015-0253. Epub 2016 Jul 1.

引用本文的文献

1
Screening for variable drug responses using human iPSC cohorts.
PLoS One. 2025 May 30;20(5):e0323953. doi: 10.1371/journal.pone.0323953. eCollection 2025.
4
Using Human iPSC-Derived Peripheral Nervous System Disease Models for Drug Discovery.
Handb Exp Pharmacol. 2023;281:191-205. doi: 10.1007/164_2023_690.
5
Applications of Human Pluripotent Stem Cell-Derived Skin Organoids in Dermatology.
J Invest Dermatol. 2023 Oct;143(10):1872-1876. doi: 10.1016/j.jid.2023.07.017.

本文引用的文献

1
Robotic high-throughput biomanufacturing and functional differentiation of human pluripotent stem cells.
Stem Cell Reports. 2021 Dec 14;16(12):3076-3092. doi: 10.1016/j.stemcr.2021.11.004. Epub 2021 Dec 2.
2
A versatile polypharmacology platform promotes cytoprotection and viability of human pluripotent and differentiated cells.
Nat Methods. 2021 May;18(5):528-541. doi: 10.1038/s41592-021-01126-2. Epub 2021 May 3.
3
Pluripotent Stem Cell-Based Cell Therapy-Promise and Challenges.
Cell Stem Cell. 2020 Oct 1;27(4):523-531. doi: 10.1016/j.stem.2020.09.014.
4
Next-generation stem cells - ushering in a new era of cell-based therapies.
Nat Rev Drug Discov. 2020 Jul;19(7):463-479. doi: 10.1038/s41573-020-0064-x. Epub 2020 Apr 6.
5
Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery.
Cell Stem Cell. 2020 Mar 5;26(3):309-329. doi: 10.1016/j.stem.2020.02.011.
6
A Multi-center Study on the Reproducibility of Drug-Response Assays in Mammalian Cell Lines.
Cell Syst. 2019 Jul 24;9(1):35-48.e5. doi: 10.1016/j.cels.2019.06.005. Epub 2019 Jul 10.
8
DNA Damage in Stem Cells.
Mol Cell. 2017 May 4;66(3):306-319. doi: 10.1016/j.molcel.2017.04.006.
9
Induced pluripotent stem cell technology: a decade of progress.
Nat Rev Drug Discov. 2017 Feb;16(2):115-130. doi: 10.1038/nrd.2016.245. Epub 2016 Dec 16.
10
Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (Phospho)Proteomic Profiling.
Stem Cell Reports. 2016 Sep 13;7(3):527-542. doi: 10.1016/j.stemcr.2016.07.019. Epub 2016 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验