Stem Cell Translation Laboratory (SCTL), Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA.
Methods Mol Biol. 2022;2454:811-827. doi: 10.1007/7651_2021_394.
Human pluripotent stem cells (hPSCs), such as induced pluripotent stem cells (iPSCs), hold great promise for drug discovery, toxicology studies, and regenerative medicine. Here, we describe standardized protocols and experimental procedures that combine automated cell culture for scalable production of hPSCs with quantitative high-throughput screening (qHTS) in miniaturized 384-well plates. As a proof of principle, we established dose-response assessments and determined optimal concentrations of 12 small molecule compounds that are commonly used in the stem cell field. Multi-parametric analysis of readouts from diverse assays including cell viability, mitochondrial membrane potential, plasma membrane integrity, and ATP production was used to distinguish normal biological responses from cellular stress induced by small molecule treatment. Collectively, the establishment of integrated workflows for cell manufacturing, qHTS, high-content imaging, and data analysis provides an end-to-end platform for industrial-scale projects and should leverage the drug discovery process using hPSC-derived cell types.
人类多能干细胞(hPSCs),如诱导多能干细胞(iPSCs),在药物发现、毒理学研究和再生医学方面具有巨大的应用潜力。在这里,我们描述了标准化的方案和实验程序,这些方案和程序将自动化细胞培养与微型化 384 孔板中的高通量筛选(qHTS)相结合,用于 hPSCs 的规模化生产。作为原理验证,我们建立了剂量反应评估,并确定了 12 种常用于干细胞领域的小分子化合物的最佳浓度。通过对包括细胞活力、线粒体膜电位、质膜完整性和 ATP 产生在内的各种检测的读数进行多参数分析,可将小分子处理引起的正常生物学反应与细胞应激区分开来。总的来说,细胞制造、qHTS、高内涵成像和数据分析的集成工作流程的建立为工业规模项目提供了一个端到端平台,并且应该利用基于 hPSC 衍生细胞类型的药物发现过程。