Suppr超能文献

通过社交媒体帖子探索新冠病毒检测呈阳性者的经历。

Exploring experiences of COVID-19-positive individuals from social media posts.

作者信息

Guo Jia-Wen, Sisler Shawna M, Wang Ching-Yu, Wallace Andrea S

机构信息

College of Nursing, University of Utah, Salt Lake City, Utah, USA.

出版信息

Int J Nurs Pract. 2021 Oct;27(5):e12986. doi: 10.1111/ijn.12986. Epub 2021 Jun 14.

Abstract

AIMS

This study aimed to explore the experience of individuals who claimed to be COVID-19 positive via their Twitter feeds.

BACKGROUND

Public social media data are valuable to understanding people's experiences of public health phenomena. To improve care to those with COVID-19, this study explored themes from Twitter feeds, generated by individuals who self-identified as COVID-19 positive.

DESIGN

This study utilized a descriptive design for text analysis for social media data.

METHODS

This study analysed social media text retrieved by tweets of individuals in the United States who self-reported being COVID-19 positive and posted on Twitter in English between April 2, 2020, and April 24, 2020. In extracting embedded topics from tweets, we applied topic modelling approach based on latent Dirichlet allocation and visualized the results via LDAvis, a related web-based interactive visualization tool.

RESULTS

Three themes were mined from 721 eligible tweets: (i) recognizing the seriousness of the condition in COVID-19 pandemic; (ii) having symptoms of being COVID-19 positive; and (iii) sharing the journey of being COVID-19 positive.

CONCLUSION

Leveraging the knowledge and context of study themes, we present experiences that may better reflect patient needs while experiencing COVID-19. The findings offer more descriptive support for public health nursing and other translational public health efforts during a global pandemic.

摘要

目的

本研究旨在探究那些通过推特动态宣称自己新冠病毒检测呈阳性的个体的经历。

背景

公共社交媒体数据对于理解人们对公共卫生现象的体验具有重要价值。为了改善对新冠病毒感染者的护理,本研究探讨了那些自我认定为新冠病毒检测呈阳性的个体在推特动态中所呈现的主题。

设计

本研究采用描述性设计对社交媒体数据进行文本分析。

方法

本研究分析了美国个体在2020年4月2日至2020年4月24日期间自报新冠病毒检测呈阳性并以英文发布在推特上的推文所检索到的社交媒体文本。在从推文中提取嵌入式主题时,我们应用了基于潜在狄利克雷分配的主题建模方法,并通过相关的基于网络的交互式可视化工具LDAvis对结果进行可视化展示。

结果

从721条符合条件的推文中挖掘出三个主题:(i)认识到新冠疫情中病情的严重性;(ii)出现新冠病毒检测呈阳性的症状;(iii)分享新冠病毒检测呈阳性后的经历。

结论

利用研究主题的知识和背景,我们呈现了在感染新冠病毒期间可能更好地反映患者需求的经历。这些发现为全球大流行期间的公共卫生护理及其他转化性公共卫生工作提供了更具描述性的支持。

相似文献

1
Exploring experiences of COVID-19-positive individuals from social media posts.
Int J Nurs Pract. 2021 Oct;27(5):e12986. doi: 10.1111/ijn.12986. Epub 2021 Jun 14.
2
Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study.
J Med Internet Res. 2020 Apr 21;22(4):e19016. doi: 10.2196/19016.
4
Topics, Trends, and Sentiments of Tweets About the COVID-19 Pandemic: Temporal Infoveillance Study.
J Med Internet Res. 2020 Oct 23;22(10):e22624. doi: 10.2196/22624.

本文引用的文献

1
Developing the Resilience Framework for Nursing and Healthcare.
Glob Qual Nurs Res. 2021 Mar 31;8:23333936211005475. doi: 10.1177/23333936211005475. eCollection 2021 Jan-Dec.
3
Mining twitter to explore the emergence of COVID-19 symptoms.
Public Health Nurs. 2020 Nov;37(6):934-940. doi: 10.1111/phn.12809. Epub 2020 Sep 16.
4
Protecting Children with Long-Term Conditions during the COVID-19 Pandemic.
Compr Child Adolesc Nurs. 2020 Sep;43(3):159-165. doi: 10.1080/24694193.2020.1787772. Epub 2020 Jul 14.
5
Social media can have an impact on how we manage and investigate the COVID-19 pandemic.
J Clin Epidemiol. 2020 Nov;127:198-201. doi: 10.1016/j.jclinepi.2020.06.028. Epub 2020 Jun 27.
6
Social media influence in the COVID-19 Pandemic.
Int Braz J Urol. 2020 Jul;46(suppl.1):120-124. doi: 10.1590/S1677-5538.IBJU.2020.S121.
7
8
Using Social Media to Mine and Analyze Public Opinion Related to COVID-19 in China.
Int J Environ Res Public Health. 2020 Apr 17;17(8):2788. doi: 10.3390/ijerph17082788.
9
Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science.
Lancet Psychiatry. 2020 Jun;7(6):547-560. doi: 10.1016/S2215-0366(20)30168-1. Epub 2020 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验