Calico Life Sciences LLC, South San Francisco, United States.
Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom.
Elife. 2021 Jun 15;10:e65554. doi: 10.7554/eLife.65554.
Cardiometabolic diseases are an increasing global health burden. While socioeconomic, environmental, behavioural, and genetic risk factors have been identified, a better understanding of the underlying mechanisms is required to develop more effective interventions. Magnetic resonance imaging (MRI) has been used to assess organ health, but biobank-scale studies are still in their infancy. Using over 38,000 abdominal MRI scans in the UK Biobank, we used deep learning to quantify volume, fat, and iron in seven organs and tissues, and demonstrate that imaging-derived phenotypes reflect health status. We show that these traits have a substantial heritable component (8-44%) and identify 93 independent genome-wide significant associations, including four associations with liver traits that have not previously been reported. Our work demonstrates the tractability of deep learning to systematically quantify health parameters from high-throughput MRI across a range of organs and tissues, and use the largest-ever study of its kind to generate new insights into the genetic architecture of these traits.
心血管代谢疾病是全球日益加重的健康负担。虽然已经确定了社会经济、环境、行为和遗传风险因素,但需要更好地了解潜在机制,以便开发更有效的干预措施。磁共振成像 (MRI) 已被用于评估器官健康,但生物库规模的研究仍处于起步阶段。我们使用英国生物库中的 38000 多个腹部 MRI 扫描,使用深度学习技术定量测量七个器官和组织中的体积、脂肪和铁,并证明成像衍生的表型反映了健康状况。我们表明,这些特征具有相当大的遗传成分(8-44%),并确定了 93 个独立的全基因组显著关联,包括与肝脏特征的四个关联,这些关联以前没有报道过。我们的工作证明了深度学习从高通量 MRI 系统地定量分析一系列器官和组织中健康参数的可行性,并利用此类研究中规模最大的研究,为这些特征的遗传结构提供了新的见解。