Ke Bingyuan, Wang Xinghui
College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou 350108, China.
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2415693122. doi: 10.1073/pnas.2415693122. Epub 2025 Apr 18.
Large-scale integration of microbattery systems on chips has long been hindered by the technical barrier between electrochemistry and microelectronics, particularly in terms of the compatibility of microbattery cells and their collective manufacturability. In this work, a silicon-based all-solid-state thin-film microbattery cell is developed at low temperatures for on-chip integration applications. Stress management at the interfaces covering both the resistance to interfacial fracture and the stress dissipation through strain regulation enables microbattery cells to deliver a high-rate performance (34.4 mA cm), fast charge-discharge properties (1,000,000 cycles at 20 mA cm), and high-temperature tolerance (150 °C) under zero stack pressure. An intrinsic relationship among lithium utilization ratio, strain, stress, and interface manifestation is uncovered. A collective microfabrication protocol for on-chip microbattery packs is proposed, resulting in a prototype of series-connected microbattery packs. This work focuses on practically addressing the technologies and challenges in engineering on-chip microbattery systems for large-scale integration.
长期以来,微电池系统在芯片上的大规模集成一直受到电化学与微电子学之间技术壁垒的阻碍,特别是在微电池单元的兼容性及其集体可制造性方面。在这项工作中,为了实现片上集成应用,开发了一种低温硅基全固态薄膜微电池单元。通过在界面处进行应力管理,包括抵抗界面断裂以及通过应变调节实现应力耗散,使得微电池单元能够在零堆叠压力下实现高倍率性能(34.4 mA/cm²)、快速充放电特性(在20 mA/cm²下循环1,000,000次)以及高温耐受性(150°C)。揭示了锂利用率、应变、应力和界面表现之间的内在关系。提出了一种用于片上微电池组的集体微制造协议,从而得到了串联微电池组的原型。这项工作着重实际解决大规模集成片上微电池系统中的技术和挑战。