Li Yuzhe, Zhang Yuning
School of Electronic Science and Engineering, Southeast University, Nanjing 211189, China.
Shi-Cheng Laboratory for Information Display and Visualization, Nanjing 210013, China.
Sensors (Basel). 2024 Oct 8;24(19):6480. doi: 10.3390/s24196480.
Non-line-of-sight imaging is a technique for reconstructing scenes behind obstacles. We report a real-time passive non-line-of-sight (NLOS) imaging method for room-scale hidden scenes, which can be applied to smart home security monitoring sensing systems and indoor fast fuzzy navigation and positioning under the premise of protecting privacy. An unseen scene encoding enhancement network (USEEN) for hidden scene reconstruction is proposed, which is a convolutional neural network designed for NLOS imaging. The network is robust to ambient light interference conditions on diffuse reflective surfaces and maintains a fast reconstruction speed of 12.2 milliseconds per estimation. The consistency of the mean square error (MSE) is verified, and the peak signal-to-noise ratio (PSNR) values of 19.21 dB, 15.86 dB, and 13.62 dB are obtained for the training, validation, and test datasets, respectively. The average values of the structural similarity index (SSIM) are 0.83, 0.68, and 0.59, respectively, and are compared and discussed with the corresponding indicators of the other two models. The sensing system built using this method will show application potential in many fields that require accurate and real-time NLOS imaging, especially smart home security systems in room-scale scenes.
非视距成像是一种用于重建障碍物后方场景的技术。我们报告了一种用于房间规模隐藏场景的实时被动非视距(NLOS)成像方法,该方法可在保护隐私的前提下应用于智能家居安全监测传感系统以及室内快速模糊导航与定位。提出了一种用于隐藏场景重建的不可见场景编码增强网络(USEEN),它是一种为NLOS成像设计的卷积神经网络。该网络对漫反射表面上的环境光干扰条件具有鲁棒性,并且每次估计保持12.2毫秒的快速重建速度。验证了均方误差(MSE)的一致性,并且训练、验证和测试数据集分别获得了19.21 dB、15.86 dB和13.62 dB的峰值信噪比(PSNR)值。结构相似性指数(SSIM)的平均值分别为0.83、0.68和0.59,并与其他两个模型的相应指标进行了比较和讨论。使用该方法构建的传感系统将在许多需要精确和实时NLOS成像的领域展现应用潜力,尤其是房间规模场景中的智能家居安全系统。