Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan.
Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan.
J Neurosci. 2021 Jul 28;41(30):6388-6414. doi: 10.1523/JNEUROSCI.0373-21.2021. Epub 2021 Jun 15.
The striatum is the main structure of the basal ganglia. The striatum receives inputs from various cortical areas, and its subregions play distinct roles in motor and emotional functions. Recently, striatal maps based on corticostriatal connectivity and striosome-matrix compartmentalization were developed, and we were able to subdivide the striatum into seven subregions. Dopaminergic modulation of the excitability of medium spiny neurons (MSNs) is critical for striatal function. In this study, we investigated the functional properties of dopamine signaling in seven subregions of the striatum from male mice. By monitoring the phosphorylation of PKA substrates including DARPP-32 in mouse striatal slices, we identified two subregions with low D1 receptor signaling: the dorsolateral portion of the intermediate/rostral part (DL-IR) and the intermediate/caudal part (IC). Low D1 receptor signaling in the two subregions was maintained by phosphodiesterase (PDE)10A and muscarinic M4 receptors. In an animal model of 6-hydroxydopamine (6-OHDA)-induced hemi-parkinsonism, D1 receptor signaling was upregulated in almost all subregions including the DL-IR, but not in the IC. When L-DOPA-induced dyskinesia (LID) was developed, D1 receptor signaling in the IC was upregulated and correlated with the severity of LID. Our results suggest that the function of the striatum is maintained through the subregion-specific regulation of dopamine D1 receptor signaling and that the aberrant activation of D1 receptor signaling in the IC is involved in LID. Future studies focusing on D1 receptor signaling in the IC of the striatum will facilitate the development of novel therapeutics for LID. Recent progress in striatal mapping based on corticostriatal connectivity and striosome-matrix compartmentalization allowed us to subdivide the striatum into seven subregions. Analyses of D1 receptor signaling in the seven subregions identified two unique subregions with low D1 receptor signaling: the dorsolateral portion of the intermediate/rostral part (DL-IR) and the intermediate/caudal part (IC). Aberrant activation of D1 receptor signaling in the IC is involved in L-DOPA-induced dyskinesia (LID). Previous studies of LID have mainly focused on the DL-IR, but not on the IC of the striatum. Future studies to clarify aberrant D1 receptor signaling in the IC are required to develop novel therapeutics for LID.
纹状体是基底神经节的主要结构。纹状体接收来自各种皮质区域的输入,其亚区在运动和情绪功能中发挥着不同的作用。最近,基于皮质纹状体连接和纹状体-基质分区的纹状体图谱被开发出来,我们能够将纹状体细分为七个亚区。多巴胺能调制中等棘突神经元(MSNs)的兴奋性对纹状体功能至关重要。在这项研究中,我们从雄性小鼠中研究了七个纹状体亚区的多巴胺信号的功能特性。通过监测包括 DARPP-32 在内的 PKA 底物的磷酸化,我们在纹状体切片中鉴定出两个 D1 受体信号低的亚区:中间/额部(DL-IR)的背外侧部分和中间/尾部(IC)。这两个亚区的低 D1 受体信号由磷酸二酯酶(PDE)10A 和毒蕈碱 M4 受体维持。在 6-羟多巴胺(6-OHDA)诱导的半帕金森病动物模型中,包括 DL-IR 在内的几乎所有亚区的 D1 受体信号都上调,但 IC 除外。当 L-DOPA 诱导的运动障碍(LID)发生时,IC 中的 D1 受体信号上调,并与 LID 的严重程度相关。我们的结果表明,纹状体的功能通过多巴胺 D1 受体信号的亚区特异性调节来维持,而 IC 中 D1 受体信号的异常激活与 LID 有关。未来集中研究纹状体 IC 中的 D1 受体信号将有助于开发治疗 LID 的新疗法。最近基于皮质纹状体连接和纹状体-基质分区的纹状体图谱的进展使我们能够将纹状体细分为七个亚区。对七个亚区的 D1 受体信号分析确定了两个具有低 D1 受体信号的独特亚区:中间/额部(DL-IR)的背外侧部分和中间/尾部(IC)。IC 中 D1 受体信号的异常激活与 L-DOPA 诱导的运动障碍(LID)有关。以前的 LID 研究主要集中在纹状体的 DL-IR 上,但没有集中在纹状体的 IC 上。需要进一步研究以阐明 IC 中异常的 D1 受体信号,从而为 LID 开发新的治疗方法。