Inserm, Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux Cedex, Bordeaux, France.
McGill Group for Suicide Studies, Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, QC, Canada.
Sci Rep. 2021 Jun 15;11(1):11363. doi: 10.1038/s41598-021-90728-z.
Suicidal thoughts and behaviours are prevalent among college students. Yet little is known about screening tools to identify students at higher risk. We aimed to develop a risk algorithm to identify the main predictors of suicidal thoughts and behaviours among college students within one-year of baseline assessment. We used data collected in 2013-2019 from the French i-Share cohort, a longitudinal population-based study including 5066 volunteer students. To predict suicidal thoughts and behaviours at follow-up, we used random forests models with 70 potential predictors measured at baseline, including sociodemographic and familial characteristics, mental health and substance use. Model performance was measured using the area under the receiver operating curve (AUC), sensitivity, and positive predictive value. At follow-up, 17.4% of girls and 16.8% of boys reported suicidal thoughts and behaviours. The models achieved good predictive performance: AUC, 0.8; sensitivity, 79% for girls, 81% for boys; and positive predictive value, 40% for girls and 36% for boys. Among the 70 potential predictors, four showed the highest predictive power: 12-month suicidal thoughts, trait anxiety, depression symptoms, and self-esteem. We identified a parsimonious set of mental health indicators that accurately predicted one-year suicidal thoughts and behaviours in a community sample of college students.
自杀意念和行为在大学生中很普遍。然而,对于识别高危学生的筛查工具知之甚少。我们旨在开发一种风险算法,以识别基线评估后一年内大学生自杀意念和行为的主要预测因素。我们使用了 2013 年至 2019 年期间从法国 i-Share 队列收集的数据,这是一项基于人群的纵向研究,包括 5066 名志愿者学生。为了预测随访时的自杀意念和行为,我们使用了随机森林模型,其中包括基线测量的 70 个潜在预测因素,包括社会人口统计学和家族特征、心理健康和物质使用。使用接收者操作特征曲线下的面积(AUC)、敏感性和阳性预测值来衡量模型性能。随访时,17.4%的女孩和 16.8%的男孩报告有自杀意念和行为。这些模型的预测性能良好:AUC 为 0.8;女孩的敏感性为 79%,男孩的敏感性为 81%;女孩的阳性预测值为 40%,男孩的阳性预测值为 36%。在 70 个潜在预测因素中,有四个表现出最高的预测能力:12 个月的自杀意念、特质焦虑、抑郁症状和自尊。我们确定了一组简洁的心理健康指标,可以准确预测社区样本大学生一年内的自杀意念和行为。
J Clin Psychiatry. 2017-7
J Affect Disord. 2017-1-1
Front Psychiatry. 2025-8-15
Depress Anxiety. 2025-7-28
J Med Internet Res. 2025-6-16
BMC Psychiatry. 2025-4-22
Focus (Am Psychiatr Publ). 2020-4
JAMA Psychiatry. 2021-2-1
Child Adolesc Ment Health. 2021-5