Mutema Anthony B, Linda Lillian, Jjingo Daudi, Fatumo Segun, Kinyanda Eugene, Kalungi Allan
African Center of Excellence in Bioinformatics and Data Intensive Science, Makerere University, Kampala, Uganda.
AIDS Healthcare Foundation (AHF-Uganda Cares), Kampala, Uganda.
Front Psychiatry. 2025 Aug 15;16:1584335. doi: 10.3389/fpsyt.2025.1584335. eCollection 2025.
People living with HIV (PLWH) are more likely to experience suicidal thoughts and exhibit suicidal behavior than the general population. However, there are currently no effective methods of predicting who is likely to experience suicidal thoughts and behavior. Machine learning (ML) approaches can be leveraged to develop models that evaluate the complex etiology of suicidal behavior, facilitating the timely identification of at-risk individuals and promoting individualized treatment allocation.
This retrospective case-control study used longitudinal sociodemographic, psychosocial, and clinical data of 1,126 PLWH from Uganda to evaluate the potential of ML in predicting suicidality. In addition, suicidality polygenic risk scores (PRS) were calculated for a subset of 282 study participants and incorporated as an additional feature in the model to determine if including genomic information improves overall model performance. The model's performance was evaluated using the area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), sensitivity, specificity, and Mathew's correlation coefficient (MCC).
We trained and evaluated eight different ML algorithms, including logistic regression, support vector machines, Naïve Bayes, k-nearest neighbors, decision trees, random forests, AdaBoost, and gradient-boosting classifiers. Cost-sensitive AdaBoost emerged as the best model, achieving an AUC of 0.79 (95% CI: 0.72-0.87), a sensitivity of 0.63, a specificity of 0.74, a PPV of 0.36, and an NPV of 0.89 on unseen baseline data. The model demonstrated good generalizability, predicting prevalent and incident suicidality at 12-month follow-up with an AUC of 0.75 (95% CI: 0.69-0.81) and 0.69 (95% CI: 0.62-0.76), respectively. Incorporating PRS as an additional feature in the model resulted in a 6% improvement in model sensitivity and a 9% reduction in specificity. A positive MDD diagnosis and high stress contributed the most to predicting suicidality risk.
A cost-sensitive AdaBoost model developed using the sociodemographic, psychosocial, and clinical data of PLWH in Uganda can predict suicidality risk, albeit with modest PPV. Incorporating suicidality PRS improved the overall predictive performance of the model. However, larger studies involving more diverse participants are needed to evaluate the potential of PRS in enhancing risk stratification and the clinical utility of the prediction model.
与普通人群相比,感染艾滋病毒者(PLWH)更有可能出现自杀念头并表现出自杀行为。然而,目前尚无有效的方法来预测哪些人可能会出现自杀念头和行为。机器学习(ML)方法可用于开发评估自杀行为复杂病因的模型,有助于及时识别高危个体并促进个体化治疗分配。
这项回顾性病例对照研究使用了来自乌干达的1126名PLWH的纵向社会人口统计学、心理社会和临床数据,以评估ML在预测自杀倾向方面的潜力。此外,为282名研究参与者的一个子集计算了自杀多基因风险评分(PRS),并将其作为模型中的一个附加特征,以确定纳入基因组信息是否能提高整体模型性能。使用受试者工作特征曲线下面积(AUC)、阳性预测值(PPV)、敏感性、特异性和马修斯相关系数(MCC)评估模型性能。
我们训练并评估了八种不同的ML算法,包括逻辑回归、支持向量机、朴素贝叶斯、k近邻、决策树、随机森林、AdaBoost和梯度提升分类器。成本敏感型AdaBoost成为最佳模型,在未见过的基线数据上,AUC为0.79(95%CI:0.72 - 0.87),敏感性为0.63,特异性为0.74,PPV为0.36,阴性预测值为0.89。该模型具有良好的通用性,在12个月随访时预测普遍和新发自杀倾向的AUC分别为0.75(95%CI:0.69 - 0.81)和0.69(95%CI:0.62 - 0.76)。将PRS作为模型中的附加特征可使模型敏感性提高6%,特异性降低9%。重度抑郁障碍的阳性诊断和高压力对预测自杀倾向风险的贡献最大。
使用乌干达PLWH的社会人口统计学、心理社会和临床数据开发的成本敏感型AdaBoost模型可以预测自杀倾向风险,尽管PPV适中。纳入自杀PRS可提高模型的整体预测性能。然而,需要涉及更多样化参与者的更大规模研究来评估PRS在加强风险分层和预测模型临床效用方面的潜力。