Stenning Kilian D, Gartside Jack C, Dion Troy, Vanstone Alexander, Arroo Daan M, Branford Will R
Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom.
London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom.
ACS Nano. 2021 Jan 26;15(1):674-685. doi: 10.1021/acsnano.0c06894. Epub 2020 Dec 15.
Strongly interacting nanomagnetic systems are pivotal across next-generation technologies including reconfigurable magnonics and neuromorphic computation. Controlling magnetization states and local coupling between neighboring nanoelements allows vast reconfigurability and a host of associated functionalities. However, existing designs typically suffer from an inability to tailor interelement coupling post-fabrication and nanoelements restricted to a pair of Ising-like magnetization states. Here, we propose a class of reconfigurable magnonic crystals incorporating nanodisks as the functional element. Ferromagnetic nanodisks are crucially bistable in macrospin and vortex states, allowing interelement coupling to be selectively activated (macrospin) or deactivated (vortex). Through microstate engineering, we leverage the distinct coupling behaviors and magnonic band structures of bistable nanodisks to achieve reprogrammable magnonic waveguiding, bending, gating, and phase-shifting across a 2D network. The potential of nanodisk-based magnonics for wave-based computation is demonstrated via an all-magnon interferometer exhibiting XNOR logic functionality. Local microstate control is achieved here via topological magnetic writing using a magnetic force microscope tip.
强相互作用纳米磁体系统在包括可重构磁子学和神经形态计算在内的下一代技术中起着关键作用。控制相邻纳米元件之间的磁化状态和局部耦合可实现巨大的可重构性以及一系列相关功能。然而,现有设计通常存在无法在制造后调整元件间耦合以及纳米元件仅限于一对类伊辛磁化状态的问题。在此,我们提出一类以纳米盘作为功能元件的可重构磁子晶体。铁磁纳米盘在宏观自旋和涡旋状态下具有至关重要的双稳态,使得元件间耦合能够被选择性地激活(宏观自旋)或去激活(涡旋)。通过微状态工程,我们利用双稳态纳米盘独特的耦合行为和磁子能带结构,在二维网络中实现可重新编程的磁子波导、弯曲、选通和相移。基于纳米盘的磁子学在基于波的计算方面的潜力通过展示异或非逻辑功能的全磁子干涉仪得以证明。这里通过使用磁力显微镜针尖进行拓扑磁写入实现了局部微状态控制。