Weliwatte N Samali, Grattieri Matteo, Simoska Olja, Rhodes Zayn, Minteer Shelley D
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.
Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, Bari 70125, Italy.
Langmuir. 2021 Jun 16. doi: 10.1021/acs.langmuir.1c01167.
Photobioelectrocatalysis (PBEC) adopts the sophistication and sustainability of photosynthetic units to convert solar energy into electrical energy. However, the electrically insulating outer membranes of photosynthetic units hinder efficient extracellular electron transfer from photosynthetic redox centers to an electrode in photobioelectrocatalytic systems. Among the artificial redox-mediating approaches used to enhance electrochemical communication at this biohybrid interface, conducting redox polymers (CRPs) are characterized by high intrinsic electric conductivities for efficient charge transfer. A majority of these CRPs constitute peripheral redox pendants attached to a conducting backbone by a linker. The consequently branched CRPs necessitate maintaining synergistic interactions between the pendant, linker, and backbone for optimal mediator performance. Herein, an unbranched, metal-free CRP, polydihydroxy aniline (PDHA), which has its redox moiety embedded in the polymer mainchain, is used as an exogenous redox mediator and an immobilization matrix at the biohybrid interface. As a proof of concept, the relatively complex membrane system of spinach chloroplasts is used as the photobioelectrocatalyst of choice. A "mixed" deposition of chloroplasts and PDHA generated a 2.4-fold photocurrent density increment. An alternative "layered" PDHA-chloroplast deposition, which was used to control panchromatic light absorbance by the intensely colored PDHA competing with the photoactivity of chloroplasts, generated a 4.2-fold photocurrent density increment. The highest photocurrent density recorded with intact chloroplasts was achieved by the "layered" deposition when used in conjunction with the diffusible redox mediator 2,6-dichlorobenzoquinone (-48 ± 3 μA cm). Our study effectively expands the scope of germane CRPs in PBEC, emphasizing the significance of the rational selection of CRPs for electrically insulating photobioelectrocatalysts and of the holistic modulation of the CRP-mediated biohybrids for optimal performance.
光生物电催化(PBEC)利用光合单元的精密性和可持续性将太阳能转化为电能。然而,光合单元的电绝缘外膜阻碍了光生物电催化系统中光合氧化还原中心向电极的高效细胞外电子转移。在用于增强这种生物杂交界面电化学通讯的人工氧化还原介导方法中,导电氧化还原聚合物(CRP)具有高本征电导率以实现高效电荷转移。这些CRP中的大多数构成通过连接基连接到导电主链上的外围氧化还原侧基。因此,支化的CRP需要在侧基、连接基和主链之间保持协同相互作用以实现最佳介体性能。在此,一种无支链、无金属的CRP,聚二羟基苯胺(PDHA),其氧化还原部分嵌入聚合物主链中,被用作生物杂交界面的外源性氧化还原介体和固定基质。作为概念验证,菠菜叶绿体相对复杂的膜系统被用作首选的光生物电催化剂。叶绿体和PDHA的“混合”沉积使光电流密度增加了2.4倍。另一种“分层”的PDHA-叶绿体沉积,通过颜色深的PDHA与叶绿体的光活性竞争来控制全色光吸收,使光电流密度增加了4.2倍。当与可扩散的氧化还原介体2,6-二氯苯醌一起使用时,完整叶绿体记录到的最高光电流密度是通过“分层”沉积实现的(-48±3μA cm)。我们的研究有效地扩展了PBEC中相关CRP的范围,强调了为电绝缘光生物电催化剂合理选择CRP以及对CRP介导的生物杂交体进行整体调节以实现最佳性能的重要性。