Mancera-Martínez Eder, Dong Yihan, Makarian Joelle, Srour Ola, Thiébeauld Odon, Jamsheer Muhammed, Chicher Johana, Hammann Philippe, Schepetilnikov Mikhail, Ryabova Lyubov A
Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France.
Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRS, Université de Strasbourg, Strasbourg, France.
Nucleic Acids Res. 2021 Jul 9;49(12):6908-6924. doi: 10.1093/nar/gkab501.
Reinitiation supporting protein, RISP, interacts with 60S (60S ribosomal subunit) and eIF3 (eukaryotic initiation factor 3) in plants. TOR (target-of-rapamycin) mediates RISP phosphorylation at residue Ser267, favoring its binding to eL24 (60S ribosomal protein L24). In a viral context, RISP, when phosphorylated, binds the CaMV transactivator/ viroplasmin, TAV, to assist in an exceptional mechanism of reinitiation after long ORF translation. Moreover, we show here that RISP interacts with eIF2 via eIF2β and TOR downstream target 40S ribosomal protein eS6. A RISP phosphorylation knockout, RISP-S267A, binds preferentially eIF2β, and both form a ternary complex with eIF3a in vitro. Accordingly, transient overexpression in plant protoplasts of RISP-S267A, but not a RISP phosphorylation mimic, RISP-S267D, favors translation initiation. In contrast, RISP-S267D preferentially binds eS6, and, when bound to the C-terminus of eS6, can capture 60S in a highly specific manner in vitro, suggesting that it mediates 60S loading during reinitiation. Indeed, eS6-deficient plants are highly resistant to CaMV due to their reduced reinitiation capacity. Strikingly, an eS6 phosphomimic, when stably expressed in eS6-deficient plants, can fully restore the reinitiation deficiency of these plants in cellular and viral contexts. These results suggest that RISP function in translation (re)initiation is regulated by phosphorylation at Ser267.
重新起始支持蛋白(RISP)在植物中与60S(60S核糖体亚基)和真核起始因子3(eIF3)相互作用。雷帕霉素靶蛋白(TOR)介导RISP在丝氨酸267位点的磷酸化,促进其与60S核糖体蛋白L24(eL24)结合。在病毒感染的情况下,磷酸化的RISP与花椰菜花叶病毒反式激活因子/病毒质纤溶酶(TAV)结合,以协助长开放阅读框翻译后的一种特殊重新起始机制。此外,我们在此表明,RISP通过eIF2β和TOR下游靶点40S核糖体蛋白eS6与eIF2相互作用。RISP磷酸化敲除突变体RISP-S267A优先结合eIF2β,并且二者在体外与eIF3a形成三元复合物。因此,在植物原生质体中瞬时过表达RISP-S267A,而不是RISP磷酸化模拟物RISP-S267D,有利于翻译起始。相反,RISP-S267D优先结合eS6,并且当与eS6的C末端结合时,能够在体外以高度特异性的方式捕获60S,这表明它在重新起始过程中介导60S的加载。实际上,eS6缺陷型植物由于其重新起始能力降低而对花椰菜花叶病毒具有高度抗性。引人注目的是,一种eS6磷酸化模拟物在eS6缺陷型植物中稳定表达时,能够在细胞和病毒感染的情况下完全恢复这些植物的重新起始缺陷。这些结果表明,RISP在翻译(重新)起始中的功能受丝氨酸267位点磷酸化的调控。