文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

胞嘧啶碱基修饰调节 DNA 双链稳定性和代谢。

Cytosine base modifications regulate DNA duplex stability and metabolism.

机构信息

Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany.

Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, China.

出版信息

Nucleic Acids Res. 2021 Dec 16;49(22):12870-12894. doi: 10.1093/nar/gkab509.


DOI:10.1093/nar/gkab509
PMID:34133727
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8682791/
Abstract

DNA base modifications diversify the genome and are essential players in development. Yet, their influence on DNA physical properties and the ensuing effects on genome metabolism are poorly understood. Here, we focus on the interplay of cytosine modifications and DNA processes. We show by a combination of in vitro reactions with well-defined protein compositions and conditions, and in vivo experiments within the complex networks of the cell that cytosine methylation stabilizes the DNA helix, increasing its melting temperature and reducing DNA helicase and RNA/DNA polymerase speed. Oxidation of methylated cytosine, however, reverts the duplex stabilizing and genome metabolic effects to the level of unmodified cytosine. We detect this effect with DNA replication and transcription proteins originating from different species, ranging from prokaryotic and viral to the eukaryotic yeast and mammalian proteins. Accordingly, lack of cytosine methylation increases replication fork speed by enhancing DNA helicase unwinding speed in cells. We further validate that this cannot simply be explained by altered global DNA decondensation, changes in histone marks or chromatin structure and accessibility. We propose that the variegated deposition of cytosine modifications along the genome regulates DNA helix stability, thereby providing an elementary mechanism for local fine-tuning of DNA metabolism.

摘要

DNA 碱基修饰使基因组多样化,是发育的重要参与者。然而,它们对 DNA 物理性质的影响以及对基因组代谢的后续影响还知之甚少。在这里,我们专注于研究胞嘧啶修饰与 DNA 过程之间的相互作用。我们通过体外反应与定义明确的蛋白质组成和条件的组合,以及细胞内复杂网络中的体内实验表明,胞嘧啶甲基化稳定 DNA 双螺旋,增加其熔点,并降低 DNA 解旋酶和 RNA/DNA 聚合酶的速度。然而,甲基化胞嘧啶的氧化会将双链体稳定化和基因组代谢作用恢复到未修饰胞嘧啶的水平。我们使用来自不同物种的 DNA 复制和转录蛋白来检测这种效应,这些蛋白源自原核生物和病毒,以及真核酵母和哺乳动物蛋白。因此,在细胞中,缺乏胞嘧啶甲基化会通过提高 DNA 解旋酶的解旋速度来增加复制叉速度。我们进一步验证,这不能简单地用全局 DNA 去凝聚的改变、组蛋白标记或染色质结构和可及性的改变来解释。我们提出,沿着基因组不均匀沉积的胞嘧啶修饰调节 DNA 螺旋稳定性,从而为 DNA 代谢的局部精细调节提供了一种基本机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/1946fa583423/gkab509fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/31d82845421e/gkab509fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/ea330fa74a66/gkab509fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/48354c1bc9f0/gkab509fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/7be963832eed/gkab509fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/768b750ed44c/gkab509fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/41ee9d4bfbda/gkab509fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/c0c81c38dd24/gkab509fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/1946fa583423/gkab509fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/31d82845421e/gkab509fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/ea330fa74a66/gkab509fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/48354c1bc9f0/gkab509fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/7be963832eed/gkab509fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/768b750ed44c/gkab509fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/41ee9d4bfbda/gkab509fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/c0c81c38dd24/gkab509fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/8682791/1946fa583423/gkab509fig8.jpg

相似文献

[1]
Cytosine base modifications regulate DNA duplex stability and metabolism.

Nucleic Acids Res. 2021-12-16

[2]
Studies on the influence of cytosine methylation on DNA recombination and end-joining in mammalian cells.

J Biol Chem. 1995-10-6

[3]
Association of ATRX with pericentric heterochromatin and the Y chromosome of neonatal mouse spermatogonia.

BMC Mol Biol. 2008-3-13

[4]
Helicase and polymerase move together close to the fork junction and copy DNA in one-nucleotide steps.

Cell Rep. 2014-3-27

[5]
DNA Polymerase-Parental DNA Interaction Is Essential for Helicase-Polymerase Coupling during Bacteriophage T7 DNA Replication.

Int J Mol Sci. 2022-1-25

[6]
Arabidopsis RNA Polymerases IV and V Are Required To Establish H3K9 Methylation, but Not Cytosine Methylation, on Geminivirus Chromatin.

J Virol. 2016-7-27

[7]
Contacts and context that regulate DNA helicase unwinding and replisome progression.

Enzymes. 2019

[8]
From structure to mechanism-understanding initiation of DNA replication.

Genes Dev. 2017-6-1

[9]
Duplex DNA engagement and RPA oppositely regulate the DNA-unwinding rate of CMG helicase.

Nat Commun. 2020-7-24

[10]
Methods to study how replication fork helicases unwind DNA.

Methods Mol Biol. 2010

引用本文的文献

[1]
TET dioxygenases localize at splicing speckles and promote RNA splicing.

Nucleus. 2025-12

[2]
In Vitro Structure-Activity Relationship Stability Study of Antisense Oligonucleotide Therapeutics Using Biological Matrices and Nucleases.

Pharmacol Res Perspect. 2025-6

[3]
Epigenetic control of tetrapyrrole biosynthesis by m4C DNA methylation in a cyanobacterium.

DNA Res. 2024-12-1

[4]
Epigenetics in the formation of pathological aggregates in amyotrophic lateral sclerosis.

Front Mol Neurosci. 2024-9-3

[5]
Histone variant macroH2A1 regulates synchronous firing of replication origins in the inactive X chromosome.

Nucleic Acids Res. 2024-10-28

[6]
Lung tumor discrimination by deep neural network model CanDo via DNA methylation in bronchial lavage.

iScience. 2024-5-22

[7]
Whole-Genome Sequencing of 5-Hydroxymethylcytosine at Base Resolution by Bisulfite-Free Single-Step Deamination with Engineered Cytosine Deaminase.

ACS Cent Sci. 2023-11-30

[8]
Z-Form Adoption of Nucleic Acid is a Multi-Step Process Which Proceeds through a Melted Intermediate.

J Am Chem Soc. 2024-1-10

[9]
Replisome loading reduces chromatin motion independent of DNA synthesis.

Elife. 2023-10-31

[10]
Methylation across the central dogma in health and diseases: new therapeutic strategies.

Signal Transduct Target Ther. 2023-8-25

本文引用的文献

[1]
Conserved strategies of RNA polymerase I hibernation and activation.

Nat Commun. 2021-2-3

[2]
Developmental differences in genome replication program and origin activation.

Nucleic Acids Res. 2020-12-16

[3]
DNA base flipping analytical pipeline.

Biol Methods Protoc. 2017-8-11

[4]
Structural basis of RNA polymerase I pre-initiation complex formation and promoter melting.

Nat Commun. 2020-3-5

[5]
RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure.

J Biol Chem. 2020-2-14

[6]
DNA Modification Readers and Writers and Their Interplay.

J Mol Biol. 2020-3-13

[7]
Epigenetic modification of cytosines fine tunes the stability of i-motif DNA.

Nucleic Acids Res. 2020-1-10

[8]
Molecular basis for the faithful replication of 5-methylcytosine and its oxidized forms by DNA polymerase β.

J Biol Chem. 2019-3-18

[9]
The Initial Response of a Eukaryotic Replisome to DNA Damage.

Mol Cell. 2018-6-6

[10]
Structural basis for the ability of MBD domains to bind methyl-CG and TG sites in DNA.

J Biol Chem. 2018-3-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索