Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany.
Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, China.
Nucleic Acids Res. 2021 Dec 16;49(22):12870-12894. doi: 10.1093/nar/gkab509.
DNA base modifications diversify the genome and are essential players in development. Yet, their influence on DNA physical properties and the ensuing effects on genome metabolism are poorly understood. Here, we focus on the interplay of cytosine modifications and DNA processes. We show by a combination of in vitro reactions with well-defined protein compositions and conditions, and in vivo experiments within the complex networks of the cell that cytosine methylation stabilizes the DNA helix, increasing its melting temperature and reducing DNA helicase and RNA/DNA polymerase speed. Oxidation of methylated cytosine, however, reverts the duplex stabilizing and genome metabolic effects to the level of unmodified cytosine. We detect this effect with DNA replication and transcription proteins originating from different species, ranging from prokaryotic and viral to the eukaryotic yeast and mammalian proteins. Accordingly, lack of cytosine methylation increases replication fork speed by enhancing DNA helicase unwinding speed in cells. We further validate that this cannot simply be explained by altered global DNA decondensation, changes in histone marks or chromatin structure and accessibility. We propose that the variegated deposition of cytosine modifications along the genome regulates DNA helix stability, thereby providing an elementary mechanism for local fine-tuning of DNA metabolism.
DNA 碱基修饰使基因组多样化,是发育的重要参与者。然而,它们对 DNA 物理性质的影响以及对基因组代谢的后续影响还知之甚少。在这里,我们专注于研究胞嘧啶修饰与 DNA 过程之间的相互作用。我们通过体外反应与定义明确的蛋白质组成和条件的组合,以及细胞内复杂网络中的体内实验表明,胞嘧啶甲基化稳定 DNA 双螺旋,增加其熔点,并降低 DNA 解旋酶和 RNA/DNA 聚合酶的速度。然而,甲基化胞嘧啶的氧化会将双链体稳定化和基因组代谢作用恢复到未修饰胞嘧啶的水平。我们使用来自不同物种的 DNA 复制和转录蛋白来检测这种效应,这些蛋白源自原核生物和病毒,以及真核酵母和哺乳动物蛋白。因此,在细胞中,缺乏胞嘧啶甲基化会通过提高 DNA 解旋酶的解旋速度来增加复制叉速度。我们进一步验证,这不能简单地用全局 DNA 去凝聚的改变、组蛋白标记或染色质结构和可及性的改变来解释。我们提出,沿着基因组不均匀沉积的胞嘧啶修饰调节 DNA 螺旋稳定性,从而为 DNA 代谢的局部精细调节提供了一种基本机制。
Nucleic Acids Res. 2021-12-16
Genes Dev. 2017-6-1
Methods Mol Biol. 2010
Front Mol Neurosci. 2024-9-3
Nucleic Acids Res. 2024-10-28
Signal Transduct Target Ther. 2023-8-25
Nat Commun. 2021-2-3
Nucleic Acids Res. 2020-12-16
Biol Methods Protoc. 2017-8-11
J Mol Biol. 2020-3-13
Nucleic Acids Res. 2020-1-10
Mol Cell. 2018-6-6
J Biol Chem. 2018-3-22