Suppr超能文献

DNA 聚合酶 β忠实复制 5-甲基胞嘧啶及其氧化形式的分子基础。

Molecular basis for the faithful replication of 5-methylcytosine and its oxidized forms by DNA polymerase β.

机构信息

From the Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709.

From the Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709

出版信息

J Biol Chem. 2019 May 3;294(18):7194-7201. doi: 10.1074/jbc.RA118.006809. Epub 2019 Mar 18.

Abstract

DNA methylation is an epigenetic mark that regulates gene expression in mammals. One method of methylation removal is through ten-eleven translocation-catalyzed oxidation and the base excision repair pathway. The iterative oxidation of 5-methylcytosine catalyzed by ten-eleven translocation enzymes produces three oxidized forms of cytosine: 5-hydroxmethylcytosine, 5-formylcytosine, and 5-carboxycytosine. The effect these modifications have on the efficiency and fidelity of the base excision repair pathway during the repair of opposing base damage, and in particular DNA polymerization, remains to be elucidated. Using kinetic assays, we show that the catalytic efficiency for the incorporation of dGTP catalyzed by human DNA polymerase β is not affected when 5-methylcytosine, 5-hydroxmethylcytosine, and 5-formylcytosine are in the DNA template. In contrast, the catalytic efficiency of dGTP insertion decreases ∼20-fold when 5-carboxycytosine is in the templating position, as compared with unmodified cytosine. However, DNA polymerase fidelity is unaltered when these modifications are in the templating position. Structural analysis reveals that the methyl, hydroxymethyl, and formyl modifications are easily accommodated within the polymerase active site. However, to accommodate the carboxyl modification, the phosphate backbone on the templating nucleotide shifts ∼2.5 Å to avoid a potential steric/repulsive clash. This altered conformation is stabilized by lysine 280, which makes a direct interaction with the carboxyl modification and the phosphate backbone of the templating strand. This work provides the molecular basis for the accommodation of epigenetic base modifications in a polymerase active site and suggests that these modifications are not mutagenically copied during base excision repair.

摘要

DNA 甲基化是一种调节哺乳动物基因表达的表观遗传标记。一种去除甲基化的方法是通过 ten-eleven 易位催化的氧化和碱基切除修复途径。ten-eleven 易位酶催化的 5-甲基胞嘧啶的反复氧化产生三种氧化形式的胞嘧啶:5-羟甲基胞嘧啶、5-甲酰基胞嘧啶和 5-羧基胞嘧啶。这些修饰物在修复相反碱基损伤时,特别是在 DNA 聚合过程中,对碱基切除修复途径的效率和保真度的影响仍有待阐明。通过动力学测定,我们表明当 5-甲基胞嘧啶、5-羟甲基胞嘧啶和 5-甲酰基胞嘧啶存在于 DNA 模板中时,人 DNA 聚合酶 β 催化的 dGTP 掺入的催化效率不受影响。相比之下,当 5-羧基胞嘧啶处于模板位置时,dGTP 插入的催化效率与未修饰的胞嘧啶相比降低了约 20 倍。然而,当这些修饰物处于模板位置时,DNA 聚合酶保真度没有改变。结构分析表明,甲基、羟甲基和甲酰基修饰很容易适应聚合酶活性位点。然而,为了适应羧基修饰,模板核苷酸的磷酸骨架会移动约 2.5 Å 以避免潜在的空间/排斥冲突。这种改变的构象由赖氨酸 280 稳定,赖氨酸 280 与羧基修饰和模板链的磷酸骨架直接相互作用。这项工作为聚合酶活性位点中表观遗传碱基修饰的适应提供了分子基础,并表明这些修饰在碱基切除修复过程中不会被诱变复制。

相似文献

1
Molecular basis for the faithful replication of 5-methylcytosine and its oxidized forms by DNA polymerase β.
J Biol Chem. 2019 May 3;294(18):7194-7201. doi: 10.1074/jbc.RA118.006809. Epub 2019 Mar 18.
3
Oxidized C5-methyl cytosine bases in DNA: 5-Hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine.
Free Radic Biol Med. 2017 Jun;107:62-68. doi: 10.1016/j.freeradbiomed.2016.11.038. Epub 2016 Nov 24.
4
Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide.
Nature. 2015 Jan 29;517(7536):635-9. doi: 10.1038/nature13886. Epub 2014 Nov 17.
5
Recognition of Oxidized 5-Methylcytosine Derivatives in DNA by Natural and Engineered Protein Scaffolds.
Chem Rec. 2018 Jan;18(1):105-116. doi: 10.1002/tcr.201700088. Epub 2017 Dec 18.
6
The effect of methylation and hydroxymethylation of cytosine on activity and fidelity of Pol λ and Pol β.
DNA Repair (Amst). 2025 Apr;148:103815. doi: 10.1016/j.dnarep.2025.103815. Epub 2025 Feb 17.
7
Molecular and structural characterization of oxidized ribonucleotide insertion into DNA by human DNA polymerase β.
J Biol Chem. 2020 Feb 7;295(6):1613-1622. doi: 10.1074/jbc.RA119.011569. Epub 2019 Dec 31.
8
Structural Basis for Excision of 5-Formylcytosine by Thymine DNA Glycosylase.
Biochemistry. 2016 Nov 15;55(45):6205-6208. doi: 10.1021/acs.biochem.6b00982. Epub 2016 Nov 2.
9
TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine.
Mutat Res Genet Toxicol Environ Mutagen. 2014 Apr;764-765:18-35. doi: 10.1016/j.mrgentox.2013.09.001. Epub 2013 Sep 14.

引用本文的文献

1
Error-Prone DNA Synthesis on Click-Ligated Templates.
Dokl Biochem Biophys. 2024 Oct;518(1):376-381. doi: 10.1134/S1607672924600416. Epub 2024 Aug 28.
2
Cytosine base modifications regulate DNA duplex stability and metabolism.
Nucleic Acids Res. 2021 Dec 16;49(22):12870-12894. doi: 10.1093/nar/gkab509.
3
Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation.
Biochim Biophys Acta Gene Regul Mech. 2021 Jan;1864(1):194659. doi: 10.1016/j.bbagrm.2020.194659. Epub 2020 Nov 30.

本文引用的文献

1
5-Formylcytosine to cytosine conversion by C-C bond cleavage in vivo.
Nat Chem Biol. 2018 Jan;14(1):72-78. doi: 10.1038/nchembio.2531. Epub 2017 Nov 27.
2
Processive searching ability varies among members of the gap-filling DNA polymerase X family.
J Biol Chem. 2017 Oct 20;292(42):17473-17481. doi: 10.1074/jbc.M117.801860. Epub 2017 Sep 11.
3
Single-Cell 5-Formylcytosine Landscapes of Mammalian Early Embryos and ESCs at Single-Base Resolution.
Cell Stem Cell. 2017 May 4;20(5):720-731.e5. doi: 10.1016/j.stem.2017.02.013. Epub 2017 Mar 23.
4
DNA polymerase β uses its lyase domain in a processive search for DNA damage.
Nucleic Acids Res. 2017 Apr 20;45(7):3822-3832. doi: 10.1093/nar/gkx047.
5
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
6
Role of TET enzymes in DNA methylation, development, and cancer.
Genes Dev. 2016 Apr 1;30(7):733-50. doi: 10.1101/gad.276568.115.
7
Weakened N3 Hydrogen Bonding by 5-Formylcytosine and 5-Carboxylcytosine Reduces Their Base-Pairing Stability.
ACS Chem Biol. 2016 Feb 19;11(2):470-7. doi: 10.1021/acschembio.5b00762. Epub 2015 Dec 17.
9
Substrate-induced DNA polymerase β activation.
J Biol Chem. 2014 Nov 7;289(45):31411-22. doi: 10.1074/jbc.M114.607432. Epub 2014 Sep 26.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验