Suppr超能文献

从观测到的主干构建替代时间网络数据。

Building surrogate temporal network data from observed backbones.

作者信息

Presigny Charley, Holme Petter, Barrat Alain

机构信息

Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Center for Living Systems, 13288 Marseille, France.

Tokyo Tech World Research Hub Initiative (WRHI), Tokyo Institute of Technology, Yokohama 226-8503, Japan.

出版信息

Phys Rev E. 2021 May;103(5-1):052304. doi: 10.1103/PhysRevE.103.052304.

Abstract

Many systems of socioeconomic interests find a convenient representation in the form of temporal networks, i.e., sets of nodes and interactions occurring at specified times. In the corresponding data sets, however, crucial elements coexist with nonessential ones and noise. Several methods have thus been proposed to extract a "network backbone," i.e., the set of most important links in a network data set. The outcome of such methods can be seen as compressed versions of the original data. However, the question of how to practically use such reduced views of the data has not been tackled: for instance, using them directly in numerical simulations of processes on networks might lead to important biases. Overall, such reduced views of the data might not be actionable without an adequate decompression method. Here, we address this issue by putting forward and exploring several systematic procedures to build surrogate data from various kinds of temporal network backbones. In particular, we explore how much information about the original data needs to be retained alongside the backbone so that the surrogate data can be used in data-driven numerical simulations of spreading processes on a wide range of spreading parameters. We illustrate our results using empirical temporal networks with a broad variety of structures and properties. Our results give hints on how to best summarize complex data sets so that they remain actionable. Moreover, they show how ensembles of surrogate data with similar properties can be obtained from an original single data set, without any modeling assumptions.

摘要

许多社会经济利益系统可以方便地以时间网络的形式呈现,即节点集和在特定时间发生的相互作用。然而,在相应的数据集中,关键元素与非必要元素及噪声共存。因此,已经提出了几种方法来提取“网络主干”,即在网络数据集中最重要的链接集。这些方法的结果可以看作是原始数据的压缩版本。然而,如何实际使用这种简化的数据视图这一问题尚未得到解决:例如,直接在网络上的过程数值模拟中使用它们可能会导致重大偏差。总体而言,如果没有适当的解压缩方法,这种简化的数据视图可能无法付诸实践。在这里,我们通过提出并探索几种系统程序来解决这个问题,这些程序用于从各种时间网络主干构建替代数据。特别是,我们探讨了除主干之外还需要保留多少关于原始数据的信息,以便替代数据可用于在广泛的传播参数上进行数据驱动的传播过程数值模拟。我们使用具有广泛结构和属性的经验时间网络来说明我们的结果。我们的结果为如何最好地总结复杂数据集以便它们仍然可付诸实践提供了线索。此外,它们展示了如何从原始单个数据集中获得具有相似属性的替代数据集合,而无需任何建模假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验