Donges Jonathan F, Lochner Jakob H, Kitzmann Niklas H, Heitzig Jobst, Lehmann Sune, Wiedermann Marc, Vollmer Jürgen
Earth System Analysis and Complexity Science, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany.
Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
Eur Phys J Spec Top. 2021;230(16-17):3311-3334. doi: 10.1140/epjs/s11734-021-00279-7. Epub 2021 Oct 1.
Spreading dynamics and complex contagion processes on networks are important mechanisms underlying the emergence of critical transitions, tipping points and other non-linear phenomena in complex human and natural systems. Increasing amounts of temporal network data are now becoming available to study such spreading processes of behaviours, opinions, ideas, diseases and innovations to test hypotheses regarding their specific properties. To this end, we here present a methodology based on dose-response functions and hypothesis testing using surrogate data models that randomise most aspects of the empirical data while conserving certain structures relevant to contagion, group or homophily dynamics. We demonstrate this methodology for synthetic temporal network data of spreading processes generated by the adaptive voter model. Furthermore, we apply it to empirical temporal network data from the Copenhagen Networks Study. This data set provides a physically-close-contact network between several hundreds of university students participating in the study over the course of 3 months. We study the potential spreading dynamics of the health-related behaviour "regularly going to the fitness studio" on this network. Based on a hierarchy of surrogate data models, we find that our method neither provides significant evidence for an influence of a dose-response-type network spreading process in this data set, nor significant evidence for homophily. The empirical dynamics in exercise behaviour are likely better described by individual features such as the disposition towards the behaviour, and the persistence to maintain it, as well as external influences affecting the whole group, and the non-trivial network structure. The proposed methodology is generic and promising also for applications to other temporal network data sets and traits of interest.
网络上的传播动态和复杂传染过程是复杂人类和自然系统中关键转变、临界点及其他非线性现象出现的重要机制。现在有越来越多的时间网络数据可用于研究行为、观点、思想、疾病和创新的此类传播过程,以检验关于其特定属性的假设。为此,我们在此提出一种基于剂量反应函数和使用替代数据模型进行假设检验的方法,该模型在保留与传染、群体或同质性动态相关的某些结构的同时,对经验数据的大多数方面进行随机化处理。我们针对由自适应选民模型生成的传播过程的合成时间网络数据演示了这种方法。此外,我们将其应用于哥本哈根网络研究的经验时间网络数据。该数据集提供了数百名参与研究的大学生在3个月期间的身体密切接触网络。我们研究了“定期去健身工作室”这种与健康相关行为在该网络上的潜在传播动态。基于替代数据模型的层次结构,我们发现我们的方法既没有为该数据集中剂量反应型网络传播过程的影响提供显著证据,也没有为同质性提供显著证据。运动行为中的经验动态可能更好地由个体特征来描述,例如对该行为的倾向、维持该行为的坚持性,以及影响整个群体的外部影响和复杂的网络结构。所提出的方法具有通用性,对于应用于其他时间网络数据集和感兴趣的特征也很有前景。