Suppr超能文献

一维无序玻色流体玻色玻璃相中的混沌

Chaos in the Bose-glass phase of a one-dimensional disordered Bose fluid.

作者信息

Daviet Romain, Dupuis Nicolas

机构信息

Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75005 Paris, France.

出版信息

Phys Rev E. 2021 May;103(5-1):052136. doi: 10.1103/PhysRevE.103.052136.

Abstract

We show that the Bose-glass phase of a one-dimensional disordered Bose fluid exhibits a chaotic behavior, i.e., an extreme sensitivity to external parameters. Using bosonization, the replica formalism and the nonperturbative functional renormalization group, we find that the ground state is unstable to any modification of the disorder configuration ("disorder" chaos) or variation of the Luttinger parameter ("quantum" chaos, analog to the "temperature" chaos in classical disordered systems). This result is obtained by considering two copies of the system, with slightly different disorder configurations or Luttinger parameters, and showing that intercopy statistical correlations are suppressed at length scales larger than an overlap length ξ_{ov}∼|ε|^{-1/α} (|ε|≪1 is a measure of the difference between the disorder distributions or Luttinger parameters of the two copies). The chaos exponent α can be obtained by computing ξ_{ov} or by studying the instability of the Bose-glass fixed point for the two-copy system when ε≠0. The renormalized, functional, intercopy disorder correlator departs from its fixed-point value-characterized by "cuspy" singularities-via a chaos boundary layer, in the same way as it approaches the Bose-glass fixed point when ε=0 through a quantum boundary layer. Performing a linear analysis of perturbations about the Bose-glass fixed point, we find α=1.

摘要

我们表明,一维无序玻色流体的玻色玻璃相表现出混沌行为,即对外界参数具有极端敏感性。通过玻色化、副本形式主义和非微扰泛函重整化群,我们发现基态对于无序构型的任何修改(“无序”混沌)或卢廷格参数的变化(“量子”混沌,类似于经典无序系统中的“温度”混沌)都是不稳定的。这个结果是通过考虑系统的两个副本得到的,它们具有略有不同的无序构型或卢廷格参数,并表明在大于重叠长度ξ_{ov}∼|ε|^{-1/α}(|ε|≪1是两个副本的无序分布或卢廷格参数之间差异的度量)的长度尺度上,副本间的统计相关性被抑制。混沌指数α可以通过计算ξ_{ov}或通过研究当ε≠0时两副本系统的玻色玻璃不动点的不稳定性来获得。重整化的、泛函的、副本间无序关联函数通过一个混沌边界层偏离其以“尖点”奇点为特征的不动点值,这与当ε = 0时它通过一个量子边界层接近玻色玻璃不动点的方式相同。对玻色玻璃不动点附近的微扰进行线性分析,我们发现α = 1。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验