Ciocanel Maria-Veronica, Sandstede Björn, Jeschonek Samantha P, Mowry Kimberly L
Mathematical Biosciences Institute, The Ohio State University, Columbus, OH.
Division of Applied Mathematics, Brown University, Providence, RI.
SIAM J Appl Dyn Syst. 2018;17(4):2855-2881. doi: 10.1137/18m1186083. Epub 2018 Dec 18.
Localization of messenger RNA (mRNA) at the vegetal cortex plays an important role in the early development of oocytes. While it is known that molecular motors are responsible for the transport of mRNA cargo along microtubules to the cortex, the mechanisms of localization remain unclear. We model cargo transport along microtubules using partial differential equations with spatially-dependent rates. A theoretical analysis of reduced versions of our model predicts effective velocity and diffusion rates for the cargo and shows that randomness of microtubule networks enhances effective transport. A more complex model using parameters estimated from fluorescence microscopy data reproduces the spatial and timescales of mRNA localization observed in oocytes, corroborates experimental hypotheses that anchoring may be necessary to achieve complete localization, and shows that anchoring of mRNA complexes actively transported to the cortex is most effective in achieving robust accumulation at the cortex.
信使核糖核酸(mRNA)在植物性卵母细胞皮质层的定位在卵母细胞的早期发育中起着重要作用。虽然已知分子马达负责沿着微管将mRNA货物运输到皮质层,但定位机制仍不清楚。我们使用具有空间依赖性速率的偏微分方程对沿着微管的货物运输进行建模。对我们模型简化版本的理论分析预测了货物的有效速度和扩散速率,并表明微管网络的随机性增强了有效运输。一个使用从荧光显微镜数据估计的参数的更复杂模型再现了在卵母细胞中观察到的mRNA定位的空间和时间尺度,证实了锚定可能是实现完全定位所必需的实验假设,并表明主动运输到皮质层的mRNA复合物的锚定在实现皮质层的稳健积累方面最有效。