Twelvetrees Alison E, Pernigo Stefano, Sanger Anneri, Guedes-Dias Pedro, Schiavo Giampietro, Steiner Roberto A, Dodding Mark P, Holzbaur Erika L F
Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Molecular NeuroPathobiology Laboratory, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.
Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
Neuron. 2016 Jun 1;90(5):1000-15. doi: 10.1016/j.neuron.2016.04.046. Epub 2016 May 19.
Cytoplasmic dynein, the major motor driving retrograde axonal transport, must be actively localized to axon terminals. This localization is critical as dynein powers essential retrograde trafficking events required for neuronal survival, such as neurotrophic signaling. Here, we demonstrate that the outward transport of dynein from soma to axon terminal is driven by direct interactions with the anterograde motor kinesin-1. In developing neurons, we find that dynein dynamically cycles between neurites, following kinesin-1 and accumulating in the nascent axon coincident with axon specification. In established axons, dynein is constantly transported down the axon at slow axonal transport speeds; inhibition of the kinesin-1-dynein interaction effectively blocks this process. In vitro and live-imaging assays to investigate the underlying mechanism lead us to propose a new model for the slow axonal transport of cytosolic cargos, based on short-lived direct interactions of cargo with a highly processive anterograde motor. VIDEO ABSTRACT.
胞质动力蛋白是驱动轴突逆行运输的主要分子马达,必须被主动定位到轴突末端。这种定位至关重要,因为动力蛋白为神经元存活所需的重要逆行运输事件提供动力,比如神经营养信号传导。在此,我们证明动力蛋白从胞体到轴突末端的外向运输是由与顺行分子马达驱动蛋白-1的直接相互作用所驱动的。在发育中的神经元中,我们发现动力蛋白在神经突之间动态循环,跟随驱动蛋白-1并在与轴突特化同时发生的新生轴突中积累。在已形成的轴突中,动力蛋白以缓慢的轴突运输速度不断沿轴突向下运输;抑制驱动蛋白-1与动力蛋白的相互作用可有效阻断这一过程。为研究潜在机制而进行的体外和实时成像分析使我们基于货物与高度持续性顺行分子马达的短暂直接相互作用,提出了一种关于胞质货物缓慢轴突运输的新模型。视频摘要。