Suppr超能文献

相似文献

1
Exploration of a 14-3-3 PPI Pocket by Covalent Fragments as Stabilizers.
ACS Med Chem Lett. 2021 May 10;12(6):976-982. doi: 10.1021/acsmedchemlett.1c00088. eCollection 2021 Jun 10.
2
From Tethered to Freestanding Stabilizers of 14-3-3 Protein-Protein Interactions through Fragment Linking.
Angew Chem Int Ed Engl. 2023 Sep 11;62(37):e202308004. doi: 10.1002/anie.202308004. Epub 2023 Aug 1.
3
Fluorescence Anisotropy-Based Tethering for Discovery of Protein-Protein Interaction Stabilizers.
ACS Chem Biol. 2020 Dec 18;15(12):3143-3148. doi: 10.1021/acschembio.0c00646. Epub 2020 Nov 16.
4
Site-Directed Fragment-Based Screening for the Discovery of Protein-Protein Interaction Stabilizers.
J Am Chem Soc. 2019 Feb 27;141(8):3524-3531. doi: 10.1021/jacs.8b11658. Epub 2019 Feb 19.
5
Discovery of 14-3-3 PPI Stabilizers by Extension of an Amidine-Substituted Thiophene Fragment.
Chembiochem. 2024 Jan 2;25(1):e202300636. doi: 10.1002/cbic.202300636. Epub 2023 Nov 17.
7
A Systematic Approach to the Discovery of Protein-Protein Interaction Stabilizers.
ACS Cent Sci. 2023 Apr 18;9(5):937-946. doi: 10.1021/acscentsci.2c01449. eCollection 2023 May 24.
8
Reversible Dual-Covalent Molecular Locking of the 14-3-3/ERRγ Protein-Protein Interaction as a Molecular Glue Drug Discovery Approach.
J Am Chem Soc. 2023 Mar 29;145(12):6741-6752. doi: 10.1021/jacs.2c12781. Epub 2023 Mar 16.
9
Reversible Covalent Imine-Tethering for Selective Stabilization of 14-3-3 Hub Protein Interactions.
J Am Chem Soc. 2021 Jun 9;143(22):8454-8464. doi: 10.1021/jacs.1c03035. Epub 2021 May 28.
10
Fragment-based exploration of the 14-3-3/Amot-p130 interface.
Curr Res Struct Biol. 2021 Dec 29;4:21-28. doi: 10.1016/j.crstbi.2021.12.003. eCollection 2022.

引用本文的文献

1
Ferroptosis regulation by traditional chinese medicine for ischemic stroke intervention based on network pharmacology and data mining.
PLoS One. 2025 Apr 16;20(4):e0321751. doi: 10.1371/journal.pone.0321751. eCollection 2025.
2
Covalent Proximity Inducers.
Chem Rev. 2025 Jan 8;125(1):326-368. doi: 10.1021/acs.chemrev.4c00570. Epub 2024 Dec 18.
3
Targeted Protein Localization by Covalent 14-3-3 Recruitment.
J Am Chem Soc. 2024 Sep 11;146(36):24788-24799. doi: 10.1021/jacs.3c12389. Epub 2024 Aug 28.
4
Template-assisted covalent modification underlies activity of covalent molecular glues.
Nat Chem Biol. 2024 Dec;20(12):1640-1649. doi: 10.1038/s41589-024-01668-4. Epub 2024 Jul 29.
6
Molecular Glue Discovery: Current and Future Approaches.
J Med Chem. 2023 Jul 27;66(14):9278-9296. doi: 10.1021/acs.jmedchem.3c00449. Epub 2023 Jul 12.
8
Protein-protein interactions: developing small-molecule inhibitors/stabilizers through covalent strategies.
Trends Pharmacol Sci. 2023 Jul;44(7):474-488. doi: 10.1016/j.tips.2023.04.007. Epub 2023 May 30.
9
A synthetic peptide from Sipunculus nudus promotes bone formation via Estrogen/MAPK signal pathway based on network pharmacology.
Front Pharmacol. 2023 Apr 24;14:1173110. doi: 10.3389/fphar.2023.1173110. eCollection 2023.
10
Contemporary biophysical approaches for studying 14-3-3 protein-protein interactions.
Front Mol Biosci. 2022 Nov 8;9:1043673. doi: 10.3389/fmolb.2022.1043673. eCollection 2022.

本文引用的文献

1
Selectivity via Cooperativity: Preferential Stabilization of the p65/14-3-3 Interaction with Semisynthetic Natural Products.
J Am Chem Soc. 2020 Jul 8;142(27):11772-11783. doi: 10.1021/jacs.0c02151. Epub 2020 Jun 23.
2
Adoption of a Turn Conformation Drives the Binding Affinity of p53 C-Terminal Domain Peptides to 14-3-3σ.
ACS Chem Biol. 2020 Jan 17;15(1):262-271. doi: 10.1021/acschembio.9b00893. Epub 2020 Jan 3.
3
Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases.
Science. 2019 Oct 4;366(6461):109-115. doi: 10.1126/science.aay0543. Epub 2019 Sep 19.
4
Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes.
Nature. 2019 Nov;575(7783):545-550. doi: 10.1038/s41586-019-1660-y. Epub 2019 Oct 3.
5
Cooperativity basis for small-molecule stabilization of protein-protein interactions.
Chem Sci. 2019 Jan 25;10(10):2869-2874. doi: 10.1039/c8sc05242e. eCollection 2019 Mar 14.
6
Site-Directed Fragment-Based Screening for the Discovery of Protein-Protein Interaction Stabilizers.
J Am Chem Soc. 2019 Feb 27;141(8):3524-3531. doi: 10.1021/jacs.8b11658. Epub 2019 Feb 19.
7
Rationally Designed Semisynthetic Natural Product Analogues for Stabilization of 14-3-3 Protein-Protein Interactions.
Angew Chem Int Ed Engl. 2018 Oct 8;57(41):13470-13474. doi: 10.1002/anie.201806584. Epub 2018 Sep 17.
8
Biophysical and structural insight into the USP8/14-3-3 interaction.
FEBS Lett. 2018 Apr;592(7):1211-1220. doi: 10.1002/1873-3468.13017. Epub 2018 Mar 2.
9
Structural characterization of 14-3-3ζ in complex with the human Son of sevenless homolog 1 (SOS1).
J Struct Biol. 2018 Jun;202(3):210-215. doi: 10.1016/j.jsb.2018.01.011. Epub 2018 Feb 1.
10
Stabilization of protein-protein interactions in drug discovery.
Expert Opin Drug Discov. 2017 Sep;12(9):925-940. doi: 10.1080/17460441.2017.1346608. Epub 2017 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验