Noort Mark C, Reader Tom W, Gillespie Alex
London School of Economics and Political Science, The United Kingdom.
Leiden University, The Netherlands.
Data Brief. 2021 May 30;37:107186. doi: 10.1016/j.dib.2021.107186. eCollection 2021 Aug.
Transcribed text from simulated hazards contains important content relevant for preventing harm. By capturing and analysing the content of speech when people raise (safety voice) or withhold safety concerns (safety silence), communication patterns may be identified for when individuals perceive risk, and safety management may be improved through identifying potential antecedents. This dataset contains transcribed speech from 404 participants (n = 377; n = 277, Age M = 22.897) engaged in a simulated hazardous scenario (walking across an unsafe plank), capturing 18,078 English words (M = 46.117). The data was collected through the Walking the plank paradigm (Noort et al, 2019), which provides a validated laboratory experiment designed for the direct observation of communication in response to hazardous scenarios that elicit safety concerns. Three manipulations were included in the design: hazard salience (salient vs not salient), responsibilities (clear vs diffuse) and encouragements (encouraged vs discouraged). Speech between two set timepoints in the hazardous scenario was transcribed based on video recordings and coded in terms of the extent to which speech involved safety voice or safety silence. Files contain i) a .csv containing the raw data, ii) a .csv providing variable description, iii) a Jupyter notebook (v. 3.7) providing the statistical code for the accompanying research article, iv) a .html version of the Jupyter notebook, v) a .html file providing the graph for the .html Jupyter notebook, vi) speech dictionaries, and vii) a copy of the electronic questionnaire. The data and supplemental files enable future research through providing a dataset in which participants can be distinguished in terms of the extent to which they are concerned and raise or withhold this. It enables speech and conversation analyses and the Jupyter notebook may be adapted to enable the parsing and coding of text using provided, existing and custom dictionaries. This may lead to the identification of communication patterns and potential interventions for unmuting safety voice. This data-in-brief is published alongside the research article: M. C. Noort, T.W. Reader, A. Gillespie. (2021). The sounds of safety silence: Interventions and temporal patterns unmute unique safety voice content in speech. Safety Science.
模拟危险情况的转录文本包含与预防伤害相关的重要内容。通过捕捉和分析人们提出安全问题(安全发声)或隐瞒安全担忧(安全沉默)时的语音内容,可以识别个体在感知风险时的沟通模式,并通过识别潜在的前因来改进安全管理。该数据集包含404名参与者(n = 377;n = 277,年龄M = 22.897)在模拟危险场景(走过不安全的木板)中的转录语音,共捕捉到18078个英语单词(M = 46.117)。数据是通过“走过木板”范式(Noort等人,2019年)收集的,该范式提供了一个经过验证的实验室实验,旨在直接观察针对引发安全担忧的危险场景的沟通情况。设计中包括三种操纵:危险显著性(显著与不显著)、责任(明确与分散)和鼓励(鼓励与不鼓励)。根据视频记录转录危险场景中两个设定时间点之间的语音,并根据语音涉及安全发声或安全沉默的程度进行编码。文件包含:i)一个包含原始数据的.csv文件,ii)一个提供变量描述的.csv文件,iii)一个为随附研究文章提供统计代码的Jupyter笔记本(版本3.7),iv)Jupyter笔记本的.html版本,v)一个为.html Jupyter笔记本提供图表的.html文件,vi)语音词典,以及vii)电子问卷的副本。这些数据和补充文件通过提供一个数据集来支持未来的研究,在该数据集中,可以根据参与者关注的程度以及他们提出或隐瞒安全问题的程度来区分他们。它支持语音和对话分析,并且Jupyter笔记本可以进行调整,以使用提供的、现有的和自定义词典对文本进行解析和编码。这可能会导致识别沟通模式以及为解除安全沉默的声音而采取的潜在干预措施。本数据简报与研究文章一同发表:M. C. Noort、T. W. Reader、A. Gillespie。(2021年)。安全沉默的声音:干预措施和时间模式解除了语音中独特的安全发声内容。《安全科学》。