Randall Centre for Cell and Molecular Biology, King's College London, London, UK.
Department of Physics, King's College London, London, WC2R 2LS, UK.
Nanoscale. 2021 Jun 21;13(23):10342-10355. doi: 10.1039/d0nr08146a. Epub 2021 Apr 16.
The pressing need of new antimicrobial products is growing stronger, particularly because of widespread antimicrobial resistance, endangering our ability to treat common infections. The recent coronavirus pandemic has dramatically highlighted the necessity of effective antibacterial and antiviral protection. This work explores at the molecular level the mechanism of action of antibacterial nanocapsules assembled in virus-like particles, their stability and their interaction with mammal and antimicrobial model membranes. We use Molecular Dynamics with force-fields of different granularity and protein design strategies to study the stability, self-assembly and membrane poration properties of these nanocapsules.
新的抗菌产品的迫切需求日益增强,特别是由于广泛的抗菌耐药性,这威胁到我们治疗常见感染的能力。最近的冠状病毒大流行突出表明了有效抗菌和抗病毒保护的必要性。这项工作从分子水平上研究了组装在类似病毒颗粒中的抗菌纳米胶囊的作用机制、它们的稳定性以及它们与哺乳动物和抗菌模型膜的相互作用。我们使用具有不同粒度的分子动力学和蛋白质设计策略来研究这些纳米胶囊的稳定性、自组装和膜穿孔特性。