文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于高效钙钛矿太阳能电池的蛾眼结构聚二甲基硅氧烷薄膜

Moth-eye Structured Polydimethylsiloxane Films for High-Efficiency Perovskite Solar Cells.

作者信息

Kim Min-Cheol, Jang Segeun, Choi Jiwoo, Kang Seong Min, Choi Mansoo

机构信息

Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul, 151-744, Republic of Korea.

Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-744, Republic of Korea.

出版信息

Nanomicro Lett. 2019 Jun 25;11(1):53. doi: 10.1007/s40820-019-0284-y.


DOI:10.1007/s40820-019-0284-y
PMID:34137987
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7770823/
Abstract

Large-area polydimethylsiloxane (PDMS) films with variably sized moth-eye structures were fabricated to improve the efficiency of perovskite solar cells. An approach that incorporated photolithography, bilayer PDMS deposition and replication was used in the fabrication process. By simply attaching the moth-eye PDMS films to the transparent substrates of perovskite solar cells, the optical properties of the devices could be tuned by changing the size of the moth-eye structures. The device with 300-nm moth-eye PDMS films greatly enhanced power conversion efficiency of ~ 21% due to the antireflective effect of the moth-eye structure. Furthermore, beautiful coloration was observed on the 1000-nm moth-eye PDMS films through optical interference caused by the diffraction grating effect. Our results imply that moth-eye PDMS films can greatly enhance the efficiency of perovskite solar cells and building-integrated photovoltaics.

摘要

制备了具有不同尺寸蛾眼结构的大面积聚二甲基硅氧烷(PDMS)薄膜,以提高钙钛矿太阳能电池的效率。在制造过程中采用了一种结合光刻、双层PDMS沉积和复制的方法。通过简单地将蛾眼PDMS薄膜附着到钙钛矿太阳能电池的透明基板上,可以通过改变蛾眼结构的尺寸来调整器件的光学性能。由于蛾眼结构的抗反射作用,具有300纳米蛾眼PDMS薄膜的器件大大提高了功率转换效率,达到了约21%。此外,通过衍射光栅效应引起的光学干涉,在1000纳米蛾眼PDMS薄膜上观察到了美丽的色彩。我们的结果表明,蛾眼PDMS薄膜可以大大提高钙钛矿太阳能电池和建筑一体化光伏的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e7/7770823/1e49c9d4452d/40820_2019_284_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e7/7770823/9ac5941bffcf/40820_2019_284_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e7/7770823/9d77dd35dfd5/40820_2019_284_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e7/7770823/028cc984731d/40820_2019_284_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e7/7770823/1e49c9d4452d/40820_2019_284_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e7/7770823/9ac5941bffcf/40820_2019_284_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e7/7770823/9d77dd35dfd5/40820_2019_284_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e7/7770823/028cc984731d/40820_2019_284_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e7/7770823/1e49c9d4452d/40820_2019_284_Fig4_HTML.jpg

相似文献

[1]
Moth-eye Structured Polydimethylsiloxane Films for High-Efficiency Perovskite Solar Cells.

Nanomicro Lett. 2019-6-25

[2]
A luminescent down-shifting and moth-eyed anti-reflective film for highly efficient photovoltaic devices.

Nanoscale. 2015-11-28

[3]
Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells.

Small. 2016-3-17

[4]
Optimization of Shapes and Sizes of Moth-Eye-Inspired Structures for the Enhancement of Their Antireflective Properties.

Polymers (Basel). 2020-2-2

[5]
Correction to: Moth-eye Structured Polydimethylsiloxane Films for High-Efficiency Perovskite Solar Cells.

Nanomicro Lett. 2019-11-1

[6]
Enhancement of Light Absorption in Photovoltaic Devices using Textured Polydimethylsiloxane Stickers.

ACS Appl Mater Interfaces. 2017-6-16

[7]
Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures.

Opt Express. 2012-11-5

[8]
Development of moisture-proof polydimethylsiloxane/aluminum oxide film and stability improvement of perovskite solar cells using the film.

RSC Adv. 2019-4-15

[9]
Boosting Light Harvesting in Perovskite Solar Cells by Biomimetic Inverted Hemispherical Architectured Polymer Layer with High Haze Factor as an Antireflective Layer.

ACS Appl Mater Interfaces. 2018-4-9

[10]
Nano-cones for broadband light coupling to high index substrates.

Sci Rep. 2016-12-7

引用本文的文献

[1]
Synergistic effects of SiO and Au nanostructures for enhanced broadband light absorption in perovskite solar cells.

Sci Rep. 2025-4-4

[2]
Broadband and wide-angle antireflective metasurfaces with complementary patterns.

Sci Rep. 2025-2-21

[3]
Control of visible-range transmission and reflection haze by varying pattern size, shape and depth in flexible metasurfaces.

Front Optoelectron. 2024-7-30

[4]
Transparent Electronics for Wearable Electronics Application.

Chem Rev. 2023-8-23

[5]
Patterning of Metal Halide Perovskite Thin Films and Functional Layers for Optoelectronic Applications.

Nanomicro Lett. 2023-7-18

[6]
Biomimicry in nanotechnology: a comprehensive review.

Nanoscale Adv. 2022-12-22

[7]
Numerical Study on Broadband Antireflection of Moth-Eye Nanostructured Polymer Film with Flexible Polyethylene Terephthalate Substrate.

Nanomaterials (Basel). 2021-12-6

[8]
Performance Enhancement of All-Inorganic Carbon-Based CsPbIBr Perovskite Solar Cells Using a Moth-Eye Anti-Reflector.

Nanomaterials (Basel). 2021-10-15

[9]
Heterojunction Incorporating Perovskite and Microporous Metal-Organic Framework Nanocrystals for Efficient and Stable Solar Cells.

Nanomicro Lett. 2020-3-28

[10]
Photonic-Plasmonic Nanostructures for Solar Energy Utilization and Emerging Biosensors.

Nanomaterials (Basel). 2020-11-12

本文引用的文献

[1]
Lead-Free Halide Double Perovskite Materials: A New Superstar Toward Green and Stable Optoelectronic Applications.

Nanomicro Lett. 2019-2-27

[2]
Recent Advances in Synthesis and Properties of Hybrid Halide Perovskites for Photovoltaics.

Nanomicro Lett. 2018

[3]
A New Method for Fitting Current-Voltage Curves of Planar Heterojunction Perovskite Solar Cells.

Nanomicro Lett. 2018

[4]
Research Progress on Photosensitizers for DSSC.

Front Chem. 2018-10-11

[5]
Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach.

J Am Chem Soc. 2018-5-15

[6]
Boosting Light Harvesting in Perovskite Solar Cells by Biomimetic Inverted Hemispherical Architectured Polymer Layer with High Haze Factor as an Antireflective Layer.

ACS Appl Mater Interfaces. 2018-4-9

[7]
A Stable Blue Photosensitizer for Color Palette of Dye-Sensitized Solar Cells Reaching 12.6% Efficiency.

J Am Chem Soc. 2018-2-7

[8]
Planar-Structure Perovskite Solar Cells with Efficiency beyond 21.

Adv Mater. 2017-10-16

[9]
Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells.

Science. 2017-6-30

[10]
Enhancement of Light Absorption in Photovoltaic Devices using Textured Polydimethylsiloxane Stickers.

ACS Appl Mater Interfaces. 2017-6-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索