文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Synergistic effects of SiO and Au nanostructures for enhanced broadband light absorption in perovskite solar cells.

作者信息

Talebi Hamideh, Rad Rafat Rafiei, Emami Farzin

机构信息

Department of Electrical Engineering and Nano-Optoelectronics Research Center, Shiraz University of Technology, Shiraz, Iran.

Department of Electrical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.

出版信息

Sci Rep. 2025 Apr 4;15(1):11548. doi: 10.1038/s41598-025-96623-1.


DOI:10.1038/s41598-025-96623-1
PMID:40185830
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11971468/
Abstract

To achieve high-performance perovskite solar cells, this study meticulously investigates the synergistic effects of SiO nanoparticles and Au nanopyramids as antireflective and plasmonic structures, respectively. Utilizing the finite-difference time-domain (FDTD) method, the effectiveness of four dielectric nanoparticles (SiO, AlO, ZnO, and TiO) as antireflection coatings is comprehensively analyzed. The optimum structure achieved a notable 12.2% increase in light absorption over the 300 nm to 800 nm wavelength range, considering absorption of Au nanopyramids as loss. This enhancement is attributed to a 6.1% reduction in light reflection by the dielectric nanoparticles and a 6.1% increase due to near-field enhancement around the Au nanopyramids. The integration of Au nanopyramids leads to superior solar cell performance because their wavelength resonance is located in the region greater than 600 nm. The J-V curve data obtained from SCAPS simulations further confirms the enhanced performance, revealing a significant increase in short-circuit current density and overall power conversion efficiency. Additionally, the device based on Au spherical nanoparticles, square and rectangular plasmonic nanostructures have also been studied to investigate the importance of the plasmonic structure geometry. These compelling findings underscore the transformative potential of combining antireflective and plasmonic strategies with the appropriate structure for exceptional light management in perovskite solar cells.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/0f90dda3d428/41598_2025_96623_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/a6e99dc263f5/41598_2025_96623_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/3b5f4baa6fbd/41598_2025_96623_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/1e6bd6e524d2/41598_2025_96623_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/8e9534fa2dab/41598_2025_96623_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/1d8d6b120e57/41598_2025_96623_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/27ac411458d0/41598_2025_96623_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/2b5883ffcf6e/41598_2025_96623_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/1c94be213772/41598_2025_96623_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/0f90dda3d428/41598_2025_96623_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/a6e99dc263f5/41598_2025_96623_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/3b5f4baa6fbd/41598_2025_96623_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/1e6bd6e524d2/41598_2025_96623_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/8e9534fa2dab/41598_2025_96623_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/1d8d6b120e57/41598_2025_96623_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/27ac411458d0/41598_2025_96623_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/2b5883ffcf6e/41598_2025_96623_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/1c94be213772/41598_2025_96623_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff9/11971468/0f90dda3d428/41598_2025_96623_Fig9_HTML.jpg

相似文献

[1]
Synergistic effects of SiO and Au nanostructures for enhanced broadband light absorption in perovskite solar cells.

Sci Rep. 2025-4-4

[2]
Plasmon-Enhanced Perovskite Solar Cells Based on Inkjet-Printed Au Nanoparticles Embedded into TiO Microdot Arrays.

Nanomaterials (Basel). 2023-9-29

[3]
Plasmon-enhanced parabolic nanostructures for broadband absorption in ultra-thin crystalline Si solar cells.

Nanoscale Adv. 2023-8-24

[4]
Efficiency Enhancement of Perovskite Solar Cells with Plasmonic Nanoparticles: A Simulation Study.

Materials (Basel). 2018-9-5

[5]
Enhancing photovoltaic efficiency in Half-Tandem MAPbI/ MASnI Perovskite solar cells with triple core-shell plasmonic nanoparticles.

Sci Rep. 2025-1-9

[6]
Arrays of Plasmonic Nanostructures for Absorption Enhancement in Perovskite Thin Films.

Nanomaterials (Basel). 2020-7-9

[7]
Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells.

ACS Appl Mater Interfaces. 2017-9-27

[8]
Models of light absorption enhancement in perovskite solar cells by plasmonic nanoparticles.

Exploration (Beijing). 2023-9-6

[9]
Theoretical study of Ag and Au triple core-shell spherical plasmonic nanoparticles in ultra-thin film perovskite solar cells.

Opt Express. 2023-6-5

[10]
Plasmonic effect of spray-deposited Au nanoparticles on the performance of inverted organic solar cells.

Nanoscale. 2014-9-21

本文引用的文献

[1]
A comprehensive survey of the application of swarm intelligent optimization algorithm in photovoltaic energy storage systems.

Sci Rep. 2024-8-2

[2]
An innovative method of the vertical coupling effect improvement to the tandem Cu(In, Ga)Se/perovskite solar cells using Ag cluster nanostructures.

Sci Rep. 2024-6-15

[3]
Enhanced absorption in perovskite solar cells by incorporating gold triangle nanostructures.

Appl Opt. 2023-7-1

[4]
Enhanced light management and optimization of perovskite solar cells incorporating wavelength dependent reflectance modeling.

Heliyon. 2022-11-10

[5]
Amorphous carbon nitride dual-function anti-reflection coating for crystalline silicon solar cells.

Sci Rep. 2022-6-14

[6]
Influence of the cathode microstructure on the stability of inverted planar perovskite solar cells.

RSC Adv. 2020-6-22

[7]
Analysis and design of InAs nanowire array based ultra broadband perfect absorber.

RSC Adv. 2021-11-23

[8]
Light absorption enhancement in ultrathin perovskite solar cells using light scattering of high-index dielectric nanospheres.

Opt Express. 2021-10-25

[9]
Design and fabrication of a semi-transparent solar cell considering the effect of the layer thickness of MoO/Ag/MoO transparent top contact on optical and electrical properties.

Sci Rep. 2021-6-22

[10]
Moth-eye Structured Polydimethylsiloxane Films for High-Efficiency Perovskite Solar Cells.

Nanomicro Lett. 2019-6-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索