Khalifa H, El-Safty S A, Reda A, Shenashen M A, Selim M M, Elmarakbi A, Metawa H A
National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan.
Department of Physics, Faculty of Science, Damanhur University, Damanhur, Egypt.
Nanomicro Lett. 2019 Oct 10;11(1):84. doi: 10.1007/s40820-019-0315-8.
To control the power hierarchy design of lithium-ion battery (LIB) built-up sets for electric vehicles (EVs), we offer intensive theoretical and experimental sets of choice anode/cathode architectonics that can be modulated in full-scale LIB built-up models. As primary structural tectonics, heterogeneous composite superstructures of full-cell-LIB (anode//cathode) electrodes were designed in closely packed flower agave rosettes TiO@C (FRTO@C anode) and vertical-star-tower LiFePO@C (VST@C cathode) building blocks to regulate the electron/ion movement in the three-dimensional axes and orientation pathways. The superpower hierarchy surfaces and multi-directional orientation components may create isosurface potential electrodes with mobile electron movements, in-to-out interplay electron dominances, and electron/charge cloud distributions. This study is the first to evaluate the hotkeys of choice anode/cathode architectonics to assemble different LIB-electrode platforms with high-mobility electron/ion flows and high-performance capacity functionalities. Density functional theory calculation revealed that the FRTO@C anode and VST-(i)@C cathode architectonics are a superior choice for the configuration of full-scale LIB built-up models. The integrated FRTO@C//VST-(i)@C full-scale LIB retains a huge discharge capacity (~ 94.2%), an average Coulombic efficiency of 99.85% after 2000 cycles at 1 C, and a high energy density of 127 Wh kg, thereby satisfying scale-up commercial EV requirements.
为了控制电动汽车(EV)锂离子电池(LIB)组的功率层级设计,我们提供了一系列深入的理论和实验性选择阳极/阴极结构设计,这些设计可以在全尺寸LIB组模型中进行调制。作为主要结构构造,全电池-LIB(阳极//阴极)电极的异质复合超结构被设计成紧密堆积的龙舌兰花朵状TiO@C(FRTO@C阳极)和垂直星塔状LiFePO@C(VST@C阴极)构建块,以调节三维轴和取向路径中的电子/离子移动。超功率层级表面和多方向取向组件可能会创建具有移动电子运动、进出相互作用电子优势以及电子/电荷云分布的等值面电位电极。本研究首次评估了选择阳极/阴极结构设计的关键因素,以组装具有高迁移率电子/离子流和高性能容量功能的不同LIB电极平台。密度泛函理论计算表明,FRTO@C阳极和VST-(i)@C阴极结构设计是全尺寸LIB组模型配置的优越选择。集成的FRTO@C//VST-(i)@C全尺寸LIB在1C下经过2000次循环后,保留了巨大的放电容量(约94.2%)、平均库仑效率为99.85%,以及127 Wh kg的高能量密度,从而满足了扩大规模的商用电动汽车要求。