Wang Bin, Ryu Jaegeon, Choi Sungho, Zhang Xinghao, Pribat Didier, Li Xianglong, Zhi Linjie, Park Soojin, Ruoff Rodney S
Center for Multidimensional Carbon Materials , Institute for Basic Science (IBS) , Ulsan 44919 , Republic of Korea.
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , PR China.
ACS Nano. 2019 Feb 26;13(2):2307-2315. doi: 10.1021/acsnano.8b09034. Epub 2019 Feb 1.
Fast charging rate and large energy storage are becoming key elements for the development of next-generation batteries, targeting high-performance electric vehicles. Developing electrodes with high volumetric and gravimetric capacity that could be operated at a high rate is the most challenging part of this process. Using silicon as the anode material, which exhibits the highest theoretical capacity as a lithium-ion battery anode, we report a binder-free electrode that interconnects carbon-sheathed porous silicon nanowires into a coral-like network and shows fast charging performance coupled to high energy and power densities when integrated into a full cell with a high areal capacity loading. The combination of interconnected nanowires, porous structure, and a highly conformal carbon coating in a single system strongly promotes the reaction kinetics of the electrode. This leads to fast-charging capability while maintaining the integrity of the electrode without structural collapse and, thus, stable cycling performance without using binder and conductive additives. Specifically, this anode shows high specific capacities (over 1200 mAh g) at an ultrahigh charging rate of 7 C over 500 charge-discharge cycles. When coupled with a commercial LiCoO or LiFePO cathode in a full cell, it delivers a volumetric energy density of 1621 Wh L with a LiCoO cathode and a power density of 7762 W L with a LiFePO cathode.
快速充电速率和大容量储能正成为下一代电池发展的关键要素,目标是高性能电动汽车。开发具有高体积容量和高重量容量且能高速运行的电极是这一过程中最具挑战性的部分。我们以硅作为阳极材料,它作为锂离子电池阳极展现出最高的理论容量,报道了一种无粘结剂电极,该电极将碳包覆的多孔硅纳米线互连形成珊瑚状网络,并且当集成到具有高面积容量负载的全电池中时,显示出与高能量和功率密度相结合的快速充电性能。单个系统中相互连接的纳米线、多孔结构和高度保形的碳涂层的组合极大地促进了电极的反应动力学。这导致了快速充电能力,同时保持电极的完整性而不发生结构坍塌,因此,无需使用粘结剂和导电添加剂就能实现稳定的循环性能。具体而言,这种阳极在7C的超高充电速率下经过500次充放电循环后显示出高比容量(超过1200mAh/g)。当与商业LiCoO或LiFePO阴极在全电池中耦合时,与LiCoO阴极搭配可提供1621Wh/L的体积能量密度,与LiFePO阴极搭配可提供7762W/L的功率密度。