Suppr超能文献

抗生素耐药性:后基因组时代的合成时间。

Antibiotic resistance: Time of synthesis in a post-genomic age.

作者信息

Gil-Gil Teresa, Ochoa-Sánchez Luz Edith, Baquero Fernando, Martínez José Luis

机构信息

Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain.

Department of Microbiology, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain.

出版信息

Comput Struct Biotechnol J. 2021 May 21;19:3110-3124. doi: 10.1016/j.csbj.2021.05.034. eCollection 2021.

Abstract

Antibiotic resistance has been highlighted by international organizations, including World Health Organization, World Bank and United Nations, as one of the most relevant global health problems. Classical approaches to study this problem have focused in infected humans, mainly at hospitals. Nevertheless, antibiotic resistance can expand through different ecosystems and geographical allocations, hence constituting a One-Health, Global-Health problem, requiring specific integrative analytic tools. Antibiotic resistance evolution and transmission are multilayer, hierarchically organized processes with several elements (from genes to the whole microbiome) involved. However, their study has been traditionally gene-centric, each element independently studied. The development of robust-economically affordable whole genome sequencing approaches, as well as other -omic techniques as transcriptomics and proteomics, is changing this panorama. These technologies allow the description of a system, either a cell or a microbiome as a whole, overcoming the problems associated with gene-centric approaches. We are currently at the time of combining the information derived from -omic studies to have a more holistic view of the evolution and spread of antibiotic resistance. This synthesis process requires the accurate integration of -omic information into computational models that serve to analyse the causes and the consequences of acquiring AR, fed by curated databases capable of identifying the elements involved in the acquisition of resistance. In this review, we analyse the capacities and drawbacks of the tools that are currently in use for the global analysis of AR, aiming to identify the more useful targets for effective corrective interventions.

摘要

抗生素耐药性已被包括世界卫生组织、世界银行和联合国在内的国际组织列为最相关的全球健康问题之一。研究这一问题的传统方法主要集中在受感染的人类身上,主要是在医院。然而,抗生素耐药性可以通过不同的生态系统和地理区域传播,因此构成了一个“同一健康”、“全球健康”问题,需要特定的综合分析工具。抗生素耐药性的演变和传播是多层次、层次化组织的过程,涉及多个要素(从基因到整个微生物组)。然而,传统上对它们的研究是以基因为中心的,每个要素都是独立研究的。强大且经济实惠的全基因组测序方法以及其他组学技术(如转录组学和蛋白质组学)的发展正在改变这一局面。这些技术能够将一个系统(无论是一个细胞还是整个微生物组)作为一个整体进行描述,克服了以基因为中心的方法所带来的问题。我们目前正处于整合来自组学研究的信息,以便更全面地了解抗生素耐药性的演变和传播的阶段。这个综合过程需要将组学信息准确整合到计算模型中,这些模型用于分析获得抗生素耐药性的原因和后果,而这些模型由能够识别参与耐药性获得的要素的精选数据库提供数据支持。在这篇综述中,我们分析了目前用于抗生素耐药性全球分析的工具的能力和缺点,旨在确定有效纠正干预措施中更有用的目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4673/8181582/e07ea23efb88/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验