Suppr超能文献

羽扇豆醇对糖尿病小鼠餐后高血糖的缓解作用。

Alleviating effects of lupeol on postprandial hyperglycemia in diabetic mice.

作者信息

Lee Hyun-Ah, Kim Min-Jung, Han Ji-Sook

机构信息

Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea.

出版信息

Toxicol Res (Camb). 2021 May 8;10(3):495-500. doi: 10.1093/toxres/tfab019. eCollection 2021 May.

Abstract

This study aimed to investigate the inhibition activities of lupeol on carbohydrate digesting enzymes and its ability to improve postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. α-Glucosidase and α-amylase inhibitory assays were executed using a chromogenic method. The effect of lupeol on hyperglycemia after a meal was measured by postprandial blood glucose in STZ-induced diabetic and normal mice. The mice were treated orally with soluble starch (2 g/kg BW) alone (control) or with lupeol (10 mg/kg BW) or acarbose (10 mg/kg BW) dissolved in water. Blood samples were taken from tail veins at 0, 30, 60, and 120 min and blood glucose was measured by a glucometer. Lupeol showed noticeable inhibitory activities on α-glucosidase and α-amylase. The half-maximal inhibitory concentrations (IC) of lupeol on α-glucosidase and α-amylase were 46.23 ± 9.03 and 84.13 ± 6.82 μM, respectively, which were more significantly effective than those of acarbose, which is a positive control. Increase in postprandial blood glucose level was more significantly lowered in the lupeol-administered group than in the control group of both STZ-induced diabetic and normal mice. In addition, the area under the curve was significantly declined with lupeol administration in the STZ-induced diabetic mice. These findings suggest that lupeol can help lower the postprandial hyperglycemia by inhibiting carbohydrate-digesting enzymes.

摘要

本研究旨在探讨羽扇豆醇对碳水化合物消化酶的抑制活性及其改善链脲佐菌素(STZ)诱导的糖尿病小鼠餐后高血糖的能力。采用显色法进行α-葡萄糖苷酶和α-淀粉酶抑制试验。通过STZ诱导的糖尿病小鼠和正常小鼠的餐后血糖来测定羽扇豆醇对餐后高血糖的影响。小鼠口服单独的可溶性淀粉(2 g/kg体重)(对照组)或溶于水的羽扇豆醇(10 mg/kg体重)或阿卡波糖(10 mg/kg体重)。在0、30、60和120分钟时从尾静脉采集血样,并用血糖仪测量血糖。羽扇豆醇对α-葡萄糖苷酶和α-淀粉酶表现出显著的抑制活性。羽扇豆醇对α-葡萄糖苷酶和α-淀粉酶的半数最大抑制浓度(IC)分别为46.23±9.03和84.13±6.82 μM,比阳性对照阿卡波糖更有效。在STZ诱导的糖尿病小鼠和正常小鼠中,羽扇豆醇给药组的餐后血糖水平升高比对照组更显著降低。此外,在STZ诱导的糖尿病小鼠中,给予羽扇豆醇后曲线下面积显著下降。这些发现表明,羽扇豆醇可通过抑制碳水化合物消化酶来帮助降低餐后高血糖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ffc/8201585/b3db4296b699/tfab019ga.jpg

相似文献

1
Alleviating effects of lupeol on postprandial hyperglycemia in diabetic mice.
Toxicol Res (Camb). 2021 May 8;10(3):495-500. doi: 10.1093/toxres/tfab019. eCollection 2021 May.
2
A phlorotannin constituent of Ecklonia cava alleviates postprandial hyperglycemia in diabetic mice.
Pharm Biol. 2017 Dec;55(1):1149-1154. doi: 10.1080/13880209.2017.1291693.
4
Extract Alleviates Postprandial Hyperglycemia in Diabetic Mice.
Prev Nutr Food Sci. 2016 Sep;21(3):181-186. doi: 10.3746/pnf.2016.21.3.181. Epub 2016 Sep 30.
5
Extract Inhibits Carbohydrate Digestive Enzymes and Alleviates Postprandial Hyperglycemia in Diabetic Mice.
Prev Nutr Food Sci. 2017 Sep;22(3):166-171. doi: 10.3746/pnf.2017.22.3.166. Epub 2017 Sep 30.
6
Alleviating Effects of Baechu Kimchi Added Ecklonia cava on Postprandial Hyperglycemia in Diabetic Mice.
Prev Nutr Food Sci. 2013 Sep;18(3):163-8. doi: 10.3746/pnf.2013.18.3.163.
8
Scopoletin inhibits α-glucosidase in vitro and alleviates postprandial hyperglycemia in mice with diabetes.
Eur J Pharmacol. 2018 Sep 5;834:152-156. doi: 10.1016/j.ejphar.2018.07.032. Epub 2018 Jul 19.
9
10
Daidzein inhibits carbohydrate digestive enzymes in vitro and alleviates postprandial hyperglycemia in diabetic mice.
Eur J Pharmacol. 2013 Jul 15;712(1-3):48-52. doi: 10.1016/j.ejphar.2013.04.047. Epub 2013 May 10.

引用本文的文献

2
Metabolomics, antioxidant, and enzyme inhibitory effects of fruits.
Front Chem. 2025 Jun 30;13:1613827. doi: 10.3389/fchem.2025.1613827. eCollection 2025.
3
Lupeol: ethnopharmacological insights and therapeutic potential in human health.
3 Biotech. 2025 Jul;15(7):199. doi: 10.1007/s13205-025-04325-2. Epub 2025 May 30.
5
Lupeol Stearate Accelerates Healing and Prevents Recurrence of Gastric Ulcer in Rodents.
Evid Based Complement Alternat Med. 2022 Apr 13;2022:6134128. doi: 10.1155/2022/6134128. eCollection 2022.
6
Plants Secondary Metabolites as Blood Glucose-Lowering Molecules.
Molecules. 2021 Jul 17;26(14):4333. doi: 10.3390/molecules26144333.

本文引用的文献

2
Inhibitory mechanism of two allosteric inhibitors, oleanolic acid and ursolic acid on α-glucosidase.
Int J Biol Macromol. 2018 Feb;107(Pt B):1844-1855. doi: 10.1016/j.ijbiomac.2017.10.040. Epub 2017 Oct 10.
3
Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose.
Bioorg Med Chem Lett. 2017 Nov 15;27(22):5065-5070. doi: 10.1016/j.bmcl.2017.09.027. Epub 2017 Sep 14.
4
Computational prediction integrating the inhibition kinetics of gallotannin on α-glucosidase.
Int J Biol Macromol. 2017 Oct;103:829-838. doi: 10.1016/j.ijbiomac.2017.05.106. Epub 2017 May 21.
5
Protective effect of betulin on cognitive decline in streptozotocin (STZ)-induced diabetic rats.
Neurotoxicology. 2016 Dec;57:104-111. doi: 10.1016/j.neuro.2016.09.009.
6
Inhibitory mechanism of morin on α-glucosidase and its anti-glycation properties.
Food Funct. 2016 Sep 14;7(9):3953-63. doi: 10.1039/c6fo00680a. Epub 2016 Aug 23.
7
Pharmacogenetics: Implications for Modern Type 2 Diabetes Therapy.
Rev Diabet Stud. 2015 Fall-Winter;12(3-4):363-76. doi: 10.1900/RDS.2015.12.363. Epub 2016 Feb 10.
8
Tetracyclic triterpenoids in herbal medicines and their activities in diabetes and its complications.
Curr Top Med Chem. 2015;15(23):2406-30. doi: 10.2174/1568026615666150619141940.
9
Triterpenes with healing activity: A systematic review.
J Dermatolog Treat. 2015 Oct;26(5):465-70. doi: 10.3109/09546634.2015.1021663. Epub 2015 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验