Lütgert J, Vorberger J, Hartley N J, Voigt K, Rödel M, Schuster A K, Benuzzi-Mounaix A, Brown S, Cowan T E, Cunningham E, Döppner T, Falcone R W, Fletcher L B, Galtier E, Glenzer S H, Laso Garcia A, Gericke D O, Heimann P A, Lee H J, McBride E E, Pelka A, Prencipe I, Saunders A M, Schölmerich M, Schörner M, Sun P, Vinci T, Ravasio A, Kraus D
Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany.
Institute for Solid State and Materials Physics, Technische Universität Dresden, 01069, Dresden, Germany.
Sci Rep. 2021 Jun 18;11(1):12883. doi: 10.1038/s41598-021-91769-0.
We present structure and equation of state (EOS) measurements of biaxially orientated polyethylene terephthalate (PET, [Formula: see text], also called mylar) shock-compressed to ([Formula: see text]) GPa and ([Formula: see text]) K using in situ X-ray diffraction, Doppler velocimetry, and optical pyrometry. Comparing to density functional theory molecular dynamics (DFT-MD) simulations, we find a highly correlated liquid at conditions differing from predictions by some equations of state tables, which underlines the influence of complex chemical interactions in this regime. EOS calculations from ab initio DFT-MD simulations and shock Hugoniot measurements of density, pressure and temperature confirm the discrepancy to these tables and present an experimentally benchmarked correction to the description of PET as an exemplary material to represent the mixture of light elements at planetary interior conditions.
我们展示了利用原位X射线衍射、多普勒测速法和光学高温测定法对双轴取向聚对苯二甲酸乙二酯(PET,[化学式:见原文],也称为聚酯薄膜)进行冲击压缩至([化学式:见原文])吉帕斯卡和([化学式:见原文])开尔文时的结构和状态方程(EOS)测量结果。与密度泛函理论分子动力学(DFT-MD)模拟结果相比,我们发现在某些状态方程表预测不同的条件下存在高度相关的液体,这突出了该体系中复杂化学相互作用的影响。基于从头算DFT-MD模拟的EOS计算以及密度、压力和温度的冲击雨贡纽测量结果证实了与这些表的差异,并针对作为代表行星内部条件下轻元素混合物的典型材料PET的描述提出了经实验验证的修正。