Guarguaglini M, Hernandez J-A, Okuchi T, Barroso P, Benuzzi-Mounaix A, Bethkenhagen M, Bolis R, Brambrink E, French M, Fujimoto Y, Kodama R, Koenig M, Lefevre F, Miyanishi K, Ozaki N, Redmer R, Sano T, Umeda Y, Vinci T, Ravasio A
LULI, CNRS, CEA, École Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128, Palaiseau cedex, France.
Sorbonne Université, Faculté des Sciences et Ingénierie, Laboratoire d'utilisation des lasers intenses (LULI), Campus Pierre et Marie Curie, place Jussieu, 75252, Paris cedex 05, France.
Sci Rep. 2019 Jul 12;9(1):10155. doi: 10.1038/s41598-019-46561-6.
Water, methane, and ammonia are commonly considered to be the key components of the interiors of Uranus and Neptune. Modelling the planets' internal structure, evolution, and dynamo heavily relies on the properties of the complex mixtures with uncertain exact composition in their deep interiors. Therefore, characterising icy mixtures with varying composition at planetary conditions of several hundred gigapascal and a few thousand Kelvin is crucial to improve our understanding of the ice giants. In this work, pure water, a water-ethanol mixture, and a water-ethanol-ammonia "synthetic planetary mixture" (SPM) have been compressed through laser-driven decaying shocks along their principal Hugoniot curves up to 270, 280, and 260 GPa, respectively. Measured temperatures spanned from 4000 to 25000 K, just above the coldest predicted adiabatic Uranus and Neptune profiles (3000-4000 K) but more similar to those predicted by more recent models including a thermal boundary layer (7000-14000 K). The experiments were performed at the GEKKO XII and LULI2000 laser facilities using standard optical diagnostics (Doppler velocimetry and optical pyrometry) to measure the thermodynamic state and the shock-front reflectivity at two different wavelengths. The results show that water and the mixtures undergo a similar compression path under single shock loading in agreement with Density Functional Theory Molecular Dynamics (DFT-MD) calculations using the Linear Mixing Approximation (LMA). On the contrary, their shock-front reflectivities behave differently by what concerns both the onset pressures and the saturation values, with possible impact on planetary dynamos.
水、甲烷和氨通常被认为是天王星和海王星内部的关键组成部分。对这些行星的内部结构、演化和发电机效应进行建模,在很大程度上依赖于其深层内部成分不确定的复杂混合物的性质。因此,在数百吉帕斯卡和数千开尔文的行星条件下,表征具有不同成分的冰混合物对于增进我们对冰巨行星的理解至关重要。在这项工作中,纯水、水 - 乙醇混合物以及水 - 乙醇 - 氨“合成行星混合物”(SPM)分别沿着其主雨贡纽曲线通过激光驱动的衰减冲击波被压缩至270、280和260吉帕斯卡。测量温度范围为4000至25000开尔文,略高于预测的最冷的天王星和海王星绝热剖面(3000 - 4000开尔文),但更类似于包括热边界层的最新模型所预测的温度(7000 - 14000开尔文)。实验在GEKKO XII和LULI2000激光设施上进行,使用标准光学诊断方法(多普勒测速和光学高温测定法)在两个不同波长下测量热力学状态和激波前沿反射率。结果表明,在单冲击波加载下,水和混合物经历相似的压缩路径,这与使用线性混合近似(LMA)的密度泛函理论分子动力学(DFT - MD)计算结果一致。相反,就起始压力和饱和值而言,它们的激波前沿反射率表现不同,这可能会对行星发电机效应产生影响。