MIT PRIMES-USA, Massachusetts Institute of Technology, Cambridge, MA, United States of America.
Math Biosci. 2021 Aug;338:108645. doi: 10.1016/j.mbs.2021.108645. Epub 2021 Jun 18.
With more than 1.7 million COVID-19 deaths, identifying effective measures to prevent COVID-19 is a top priority. We developed a mathematical model to simulate the COVID-19 pandemic with digital contact tracing and testing strategies. The model uses a real-world social network generated from a high-resolution contact data set of 180 students. This model incorporates infectivity variations, test sensitivities, incubation period, and asymptomatic cases. We present a method to extend the weighted temporal social network and present simulations on a network of 5000 students. The purpose of this work is to investigate optimal quarantine rules and testing strategies with digital contact tracing. The results show that the traditional strategy of quarantining direct contacts reduces infections by less than 20% without sufficient testing. Periodic testing every 2 weeks without contact tracing reduces infections by less than 3%. A variety of strategies are discussed including testing second and third degree contacts and the pre-exposure notification system, which acts as a social radar warning users how far they are from COVID-19. The most effective strategy discussed in this work was combining the pre-exposure notification system with testing second and third degree contacts. This strategy reduces infections by 18.3% when 30% of the population uses the app, 45.2% when 50% of the population uses the app, 72.1% when 70% of the population uses the app, and 86.8% when 95% of the population uses the app. When simulating the model on an extended network of 5000 students, the results are similar with the contact tracing app reducing infections by up to 79%.
已有超过 170 万人死于 COVID-19,因此明确有效的预防 COVID-19 措施至关重要。我们开发了一个数学模型,通过数字接触追踪和检测策略来模拟 COVID-19 大流行。该模型使用了一个从 180 名学生的高分辨率接触数据集生成的真实社交网络。该模型纳入了传染性变化、检测灵敏度、潜伏期和无症状病例。我们提出了一种扩展加权时间社交网络的方法,并在一个拥有 5000 名学生的网络上进行了模拟。本研究旨在通过数字接触追踪,调查最佳隔离规则和检测策略。结果表明,在检测不足的情况下,传统的隔离直接接触者的策略减少的感染不到 20%。不进行接触追踪,每两周进行一次定期检测,感染减少不到 3%。讨论了多种策略,包括对第二和第三度接触者进行检测以及暴露前通知系统,该系统可以充当社会雷达,提醒用户他们与 COVID-19 的距离有多远。本研究中讨论的最有效的策略是将暴露前通知系统与检测第二和第三度接触者相结合。当 30%的人群使用该应用程序时,该策略可减少 18.3%的感染;当 50%的人群使用该应用程序时,可减少 45.2%的感染;当 70%的人群使用该应用程序时,可减少 72.1%的感染;当 95%的人群使用该应用程序时,可减少 86.8%的感染。当在一个拥有 5000 名学生的扩展网络上模拟模型时,接触追踪应用程序可将感染减少多达 79%,结果相似。