The Department of Stomatology, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, China.
The Clinical Medicine Research Laboratory, The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Tianfu Road 107, Rongcheng District, Jieyang, 522000, Guangdong, China.
Int J Biochem Cell Biol. 2021 Aug;137:106026. doi: 10.1016/j.biocel.2021.106026. Epub 2021 Jun 17.
Micro/nanotextured topographies (MNTs) can modulate cell-biomaterial interactions mostly by their controllable geometrics. Among them, TiO nanotubes, regarded as having a highly controllable nanoscale geometry, have been extensively investigated and applied and significantly affect diameter-dependent cell biological behaviors. In this study, we used five typical MNTs decorated with TiO nanotubes with diameters of 30, 50, 70, 100 and 120 nm to explore the optimal nanotube diameter for improving the biofunctional properties and to more deeply understand the underlying mechanisms by which these MNTs affect osteogenic differentiation by revealing the effect of beta1-integrin/Hedgehog-Gli1 signaling on this process. The MNTs affected MG63 osteoblast-like cell spreading, osteogenic gene expression (BMP-2, Runx2 and ALP), mineralization and ALP activity in a diameter-dependent pattern, and the optimal TiO nanotube diameter of 70 nm provided the best microenvironment for osteogenic differentiation as well as beta1-integrin/Hedgehog-Gli1 signaling activation. This enhanced osteogenic differentiation by the optimal-diameter TiO nanotubes of 70 nm was attenuated via suppression of the beta1-integrin/ Hedgehog-Gli1 signaling, which indicated a significant role of this pathway in mediating the diameter-dependent osteogenic differentiation promotional effect of MNTs with different TiO nanotube diameters. These results might provide deeper insights into the signal transduction mechanisms by which different nanoscale geometries influence cellular functions for biomaterial modification and biofunctionalization.
微/纳织构表面(MNTs)可以通过其可控的几何形状来调节细胞-生物材料的相互作用。其中,TiO 纳米管被认为具有高度可控的纳米级几何形状,已被广泛研究和应用,并显著影响直径依赖性的细胞生物学行为。在这项研究中,我们使用了五种具有不同直径(30、50、70、100 和 120nm)的 TiO 纳米管修饰的典型 MNTs,以探索最佳的纳米管直径来改善生物功能特性,并通过揭示 beta1-整合素/ Hedgehog-Gli1 信号通路对这一过程的影响,更深入地了解这些 MNTs 如何通过影响成骨分化来影响其生物功能特性。MNTs 以直径依赖性的方式影响 MG63 成骨样细胞的铺展、成骨基因表达(BMP-2、Runx2 和 ALP)、矿化和 ALP 活性,最佳的 TiO 纳米管直径为 70nm,为成骨分化以及 beta1-整合素/ Hedgehog-Gli1 信号通路的激活提供了最佳的微环境。通过抑制 beta1-整合素/ Hedgehog-Gli1 信号通路,最佳直径的 70nmTiO 纳米管增强的成骨分化被减弱,这表明该途径在介导不同 TiO 纳米管直径的 MNTs 直径依赖性成骨分化促进作用中具有重要作用。这些结果可能为深入了解不同纳米级几何形状影响细胞功能的信号转导机制提供了更深入的认识,这对于生物材料的修饰和生物功能化具有重要意义。