Bondarenko Olesja, Saarma Mart
Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
Front Cell Neurosci. 2021 Jun 2;15:682597. doi: 10.3389/fncel.2021.682597. eCollection 2021.
Neurotrophic factors (NTFs) are small secreted proteins that support the development, maturation and survival of neurons. NTFs injected into the brain rescue and regenerate certain neuronal populations lost in neurodegenerative diseases, demonstrating the potential of NTFs to cure the diseases rather than simply alleviating the symptoms. NTFs (as the vast majority of molecules) do not pass through the blood-brain barrier (BBB) and therefore, are delivered directly into the brain of patients using costly and risky intracranial surgery. The delivery efficacy and poor diffusion of some NTFs inside the brain are considered the major problems behind their modest effects in clinical trials. Thus, there is a great need for NTFs to be delivered systemically thereby avoiding intracranial surgery. Nanoparticles (NPs), particles with the size dimensions of 1-100 nm, can be used to stabilize NTFs and facilitate their transport through the BBB. Several studies have shown that NTFs can be loaded into or attached onto NPs, administered systemically and transported to the brain. To improve the NP-mediated NTF delivery through the BBB, the surface of NPs can be functionalized with specific ligands such as transferrin, insulin, lactoferrin, apolipoproteins, antibodies or short peptides that will be recognized and internalized by the respective receptors on brain endothelial cells. In this review, we elaborate on the most suitable NTF delivery methods and envision "ideal" NTF for Parkinson's disease (PD) and clinical trial thereof. We shortly summarize clinical trials of four NTFs, glial cell line-derived neurotrophic factor (GDNF), neurturin (NRTN), platelet-derived growth factor (PDGF-BB), and cerebral dopamine neurotrophic factor (CDNF), that were tested in PD patients, focusing mainly on GDNF and CDNF. We summarize current possibilities of NP-mediated delivery of NTFs to the brain and discuss whether NPs have impact in improving the properties of NTFs and delivery across the BBB. Emerging delivery approaches and future directions of NTF-based nanomedicine are also discussed.
神经营养因子(NTFs)是一类分泌型小蛋白,可支持神经元的发育、成熟和存活。将神经营养因子注入大脑可挽救和再生在神经退行性疾病中丧失的某些神经元群体,这表明神经营养因子具有治愈这些疾病的潜力,而不仅仅是缓解症状。神经营养因子(与绝大多数分子一样)无法穿过血脑屏障(BBB),因此,需要通过代价高昂且有风险的颅内手术将其直接递送至患者大脑。某些神经营养因子在脑内的递送效率和较差的扩散性被认为是其在临床试验中效果有限的主要问题。因此,非常需要能够全身递送神经营养因子的方法,从而避免进行颅内手术。纳米颗粒(NPs)是尺寸在1-100纳米的颗粒,可用于稳定神经营养因子并促进其通过血脑屏障的运输。多项研究表明,神经营养因子可以装载到纳米颗粒中或附着在纳米颗粒上,通过全身给药并运输到大脑。为了改善纳米颗粒介导的神经营养因子通过血脑屏障的递送,纳米颗粒的表面可以用特定的配体进行功能化修饰,如转铁蛋白、胰岛素、乳铁蛋白、载脂蛋白、抗体或短肽,这些配体将被脑内皮细胞上各自的受体识别并内化。在这篇综述中,我们详细阐述了最合适的神经营养因子递送方法,并设想了针对帕金森病(PD)的“理想”神经营养因子及其临床试验。我们简要总结了在帕金森病患者中测试的四种神经营养因子,即胶质细胞源性神经营养因子(GDNF)、神经营养素(NRTN)、血小板衍生生长因子(PDGF-BB)和脑源性多巴胺神经营养因子(CDNF)的临床试验,主要聚焦于GDNF和CDNF。我们总结了目前纳米颗粒介导的神经营养因子向大脑递送的可能性,并讨论了纳米颗粒是否对改善神经营养因子的性质和通过血脑屏障的递送有影响。还讨论了新兴的递送方法以及基于神经营养因子的纳米医学的未来方向。