Suppr超能文献

现场可部署的计算机视觉技术用于秘鲁木材的识别

Field-Deployable Computer Vision Wood Identification of Peruvian Timbers.

作者信息

Ravindran Prabu, Owens Frank C, Wade Adam C, Vega Patricia, Montenegro Rolando, Shmulsky Rubin, Wiedenhoeft Alex C

机构信息

Department of Botany, University of Wisconsin, Madison, WI, United States.

Forest Products Laboratory, Center for Wood Anatomy Research, United States Department of Agriculture Forest Service, Madison, WI, United States.

出版信息

Front Plant Sci. 2021 Jun 2;12:647515. doi: 10.3389/fpls.2021.647515. eCollection 2021.

Abstract

Illegal logging is a major threat to forests in Peru, in the Amazon more broadly, and in the tropics globally. In Peru alone, more than two thirds of logging concessions showed unauthorized tree harvesting in natural protected areas and indigenous territories, and in 2016 more than half of exported lumber was of illegal origin. To help combat illegal logging and support legal timber trade in Peru we trained a convolutional neural network using transfer learning on images obtained from specimens in six xylaria using the open source, field-deployable XyloTron platform, for the classification of 228 Peruvian species into 24 anatomically informed and contextually relevant classes. The trained models achieved accuracies of 97% for five-fold cross validation, and 86.5 and 92.4% for top-1 and top-2 classification, respectively, on unique independent specimens from a xylarium that did not contribute training data. These results are the first multi-site, multi-user, multi-system-instantiation study for a national scale, computer vision wood identification system evaluated on independent scientific wood specimens. We demonstrate system readiness for evaluation in real-world field screening scenarios using this accurate, affordable, and scalable technology for monitoring, incentivizing, and monetizing legal and sustainable wood value chains.

摘要

非法采伐对秘鲁的森林、更广泛的亚马逊地区以及全球热带地区的森林构成了重大威胁。仅在秘鲁,就有超过三分之二的伐木特许权在自然保护区和原住民领地存在未经授权的树木采伐行为,并且在2016年,超过一半的出口木材来源非法。为了帮助打击秘鲁的非法采伐并支持合法木材贸易,我们使用开源的、可现场部署的XyloTron平台,通过迁移学习对从六个炭角菌属标本获取的图像训练了一个卷积神经网络,用于将228种秘鲁木材分类为24个具有解剖学依据且与实际情况相关的类别。在一个未提供训练数据的木材标本馆中,针对独特的独立标本,经过训练的模型在五折交叉验证中准确率达到了97%,在top-1和top-2分类中的准确率分别为86.5%和92.4%。这些结果是针对一个在独立科学木材标本上进行评估的国家级计算机视觉木材识别系统的首个多地点、多用户、多系统实例化研究。我们展示了该系统在现实世界现场筛查场景中进行评估的准备就绪情况,利用这种准确、经济且可扩展的技术来监测、激励合法和可持续木材价值链并将其货币化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef53/8206804/0150c1be0e68/fpls-12-647515-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验