Suppr超能文献

预测乳腺癌肝转移患者生存情况的列线图:一项基于人群的研究

A Nomogram for Predicting Survival in Patients With Breast Cancer Liver Metastasis: A Population-Based Study.

作者信息

Xiong Yu, Shi Xia, Hu Qi, Wu Xingwei, Long Enwu, Bian Yuan

机构信息

Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Front Oncol. 2021 Jun 2;11:600768. doi: 10.3389/fonc.2021.600768. eCollection 2021.

Abstract

OBJECTIVE

The prognosis of patients with breast cancer liver metastasis (BCLM) was poor. We aimed at constructing a nomogram to predict overall survival (OS) for BCLM patients using the SEER (Surveillance Epidemiology and End Results) database, thus choosing an optimized therapeutic regimen to treat.

METHODS

We identified 1173 patients with BCLM from the SEER database and randomly divided them into training (n=824) and testing (n=349) cohorts. The Cox proportional hazards model was applied to identify independent prognostic factors for BCLM, based on which a nomogram was constructed to predict 1-, 2-, and 3-year OS. Its discrimination and calibration were evaluated by the Concordance index (C-index) and calibration plots, while the accuracy and benefits were assessed by comparing it to AJCC-TNM staging system using the decision curve analysis (DCA). Kaplan-Meier survival analyses were applied to test the clinical utility of the risk stratification system.

RESULTS

Grade, marital status, surgery, radiation therapy, chemotherapy, CS tumor size, tumor subtypes, bone metastatic, brain metastatic, and lung metastatic were identified to be independent prognostic factors of OS. In comparison with the AJCC-TNM staging system, an improved C-index was obtained (training group: 0.701 0.557, validation group: 0.634 0.557). The calibration curves were consistent between nomogram-predicted survival probability and actual survival probability. Additionally, the DCA curves yielded larger net benefits than the AJCC-TNM staging system. Finally, the risk stratification system can significantly distinguish the ones with different survival risk based on the different molecular subtypes.

CONCLUSION

We have successfully built an effective nomogram and risk stratification system to predict OS in BCLM patients, which can assist clinicians in choosing the appropriate treatment strategies for individual BCLM patients.

摘要

目的

乳腺癌肝转移(BCLM)患者预后较差。我们旨在利用监测、流行病学和最终结果(SEER)数据库构建列线图,以预测BCLM患者的总生存期(OS),从而选择优化的治疗方案。

方法

我们从SEER数据库中识别出1173例BCLM患者,并将他们随机分为训练队列(n = 824)和测试队列(n = 349)。应用Cox比例风险模型识别BCLM的独立预后因素,并在此基础上构建列线图以预测1年、2年和3年总生存期。通过一致性指数(C指数)和校准图评估其区分度和校准情况,同时使用决策曲线分析(DCA)将其与美国癌症联合委员会(AJCC)-TNM分期系统进行比较,评估其准确性和效益。应用Kaplan-Meier生存分析来检验风险分层系统的临床实用性。

结果

分级、婚姻状况、手术、放疗、化疗、CS肿瘤大小、肿瘤亚型、骨转移、脑转移和肺转移被确定为总生存期的独立预后因素。与AJCC-TNM分期系统相比,获得了更高的C指数(训练组:0.701对0.557,验证组:0.634对0.557)。列线图预测的生存概率与实际生存概率之间的校准曲线一致。此外,DCA曲线显示出比AJCC-TNM分期系统更大的净效益。最后,风险分层系统可以根据不同的分子亚型显著区分具有不同生存风险的患者。

结论

我们成功构建了一个有效的列线图和风险分层系统来预测BCLM患者的总生存期,这可以帮助临床医生为个体BCLM患者选择合适的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a13/8206538/c7a6516b6237/fonc-11-600768-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验