Hart Oliver, Gopalakrishnan Sarang, Castelnovo Claudio
T.C.M. Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
Physics Program and Initiative for the Theoretical Sciences, Graduate Center, CUNY, New York, New York 10016, USA.
Phys Rev Lett. 2021 Jun 4;126(22):227202. doi: 10.1103/PhysRevLett.126.227202.
We explore the finite-temperature dynamics of the quasi-1D orbital compass and plaquette Ising models. We map these systems onto a model of free fermions coupled to strictly localized spin-1/2 degrees of freedom. At finite temperature, the localized degrees of freedom act as emergent disorder and localize the fermions. Although the model can be analyzed using free-fermion techniques, it has dynamical signatures in common with typical many-body localized systems: Starting from generic initial states, entanglement grows logarithmically; in addition, equilibrium dynamical correlation functions decay with an exponent that varies continuously with temperature and model parameters. These quasi-1D models offer an experimentally realizable setting in which natural dynamical probes show signatures of disorder-free many-body localization.
我们研究了准一维轨道罗盘模型和棋盘伊辛模型的有限温度动力学。我们将这些系统映射到一个与严格局域化的自旋 - 1/2自由度耦合的自由费米子模型上。在有限温度下,局域化的自由度表现为涌现无序并使费米子局域化。尽管该模型可以用自由费米子技术进行分析,但它具有与典型多体局域化系统相同的动力学特征:从一般的初始状态开始,纠缠呈对数增长;此外,平衡动力学关联函数以一个随温度和模型参数连续变化的指数衰减。这些准一维模型提供了一个实验上可实现的环境,其中自然的动力学探针显示出无无序多体局域化的特征。