Bentsen Gregory, Gu Yingfei, Lucas Andrew
Department of Physics, Stanford University, Stanford, CA 94305.
Department of Physics, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6689-6694. doi: 10.1073/pnas.1811033116. Epub 2019 Mar 21.
Given a quantum many-body system with few-body interactions, how rapidly can quantum information be hidden during time evolution? The fast-scrambling conjecture is that the time to thoroughly mix information among N degrees of freedom grows at least logarithmically in N. We derive this inequality for generic quantum systems at infinite temperature, bounding the scrambling time by a finite decay time of local quantum correlations at late times. Using Lieb-Robinson bounds, generalized Sachdev-Ye-Kitaev models, and random unitary circuits, we propose that a logarithmic scrambling time can be achieved in most quantum systems with sparse connectivity. These models also elucidate how quantum chaos is not universally related to scrambling: We construct random few-body circuits with infinite Lyapunov exponent but logarithmic scrambling time. We discuss analogies between quantum models on graphs and quantum black holes and suggest methods to experimentally study scrambling with as many as 100 sparsely connected quantum degrees of freedom.
对于一个具有少体相互作用的量子多体系统,在时间演化过程中量子信息能多快被隐藏起来?快速混沌猜想是,在(N)个自由度之间彻底混合信息的时间至少随(N)对数增长。我们针对无限温度下的一般量子系统推导了这个不等式,通过后期局部量子关联的有限衰减时间来界定混沌时间。利用利布 - 罗宾逊界、广义萨赫德夫 - 叶 - 基塔耶夫模型和随机酉电路,我们提出在大多数具有稀疏连通性的量子系统中可以实现对数混沌时间。这些模型还阐明了量子混沌并非普遍与混沌相关:我们构建了具有无限李雅普诺夫指数但对数混沌时间的随机少体电路。我们讨论了图上量子模型与量子黑洞之间的类比,并提出了用多达100个稀疏连接的量子自由度来实验研究混沌的方法。