Suppr超能文献

噬菌体长非收缩尾的生物发生。

Biogenesis of a Bacteriophage Long Non-Contractile Tail.

机构信息

Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France.

Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France.

出版信息

J Mol Biol. 2021 Sep 3;433(18):167112. doi: 10.1016/j.jmb.2021.167112. Epub 2021 Jun 18.

Abstract

Siphoviruses are main killers of bacteria. They use a long non-contractile tail to recognize the host cell and to deliver the genome from the viral capsid to the bacterial cytoplasm. Here, we define the molecular organization of the Bacillus subtilis bacteriophage SPP1 ~ 6.8 MDa tail and uncover its biogenesis mechanisms. A complex between gp21 and the tail distal protein (Dit) gp19.1 is assembled first to build the tail cap (gp19.1-gp21Nter) connected by a flexible hinge to the tail fiber (gp21Cter). The tip of the gp21Cter fiber is loosely associated to gp22. The cap provides a platform where tail tube proteins (TTPs) initiate polymerization around the tape measure protein gp18 (TMP), a reaction dependent on the non-structural tail assembly chaperones gp17.5 and gp17.5* (TACs). Gp17.5 is essential for stability of gp18 in the cell. Helical polymerization stops at a precise tube length followed by binding of proteins gp16.1 (TCP) and gp17 (THJP) to build the tail interface for attachment to the capsid portal system. This finding uncovers the function of the extensively conserved gp16.1-homologs in assembly of long tails. All SPP1 tail components, apart from gp22, share homology to conserved proteins whose coding genes' synteny is broadly maintained in siphoviruses. They conceivably represent the minimal essential protein set necessary to build functional long tails. Proteins homologous to SPP1 tail building blocks feature a variety of add-on modules that diversify extensively the tail core structure, expanding its capability to bind host cells and to deliver the viral genome to the bacterial cytoplasm.

摘要

噬病毒体是细菌的主要杀手。它们使用长长的非收缩性尾巴来识别宿主细胞,并将基因组从病毒衣壳传递到细菌细胞质。在这里,我们定义了枯草芽孢杆菌噬菌体 SPP1~6.8MDa 尾巴的分子组织,并揭示了其生物发生机制。gp21 和尾部远端蛋白(Dit)gp19.1 之间的复合物首先组装,以构建连接柔性铰链的尾部帽(gp19.1-gp21Nter)与尾部纤维(gp21Cter)。gp21Cter 纤维的尖端与 gp22 松散结合。帽为尾管蛋白(TTP)提供了一个平台,TTP 围绕着尺蛋白 gp18(TMP)开始聚合,该反应依赖于非结构尾部组装伴侣 gp17.5 和 gp17.5*(TACs)。gp17.5 对于 gp18 在细胞中的稳定性是必不可少的。螺旋聚合在精确的管长处停止,然后结合蛋白 gp16.1(TCP)和 gp17(THJP)以构建用于与衣壳门户系统附着的尾部接口。这一发现揭示了广泛保守的 gp16.1 同源物在长尾巴组装中的作用。除了 gp22 之外,所有 SPP1 尾巴成分都与保守蛋白具有同源性,其编码基因的基因同线性在噬病毒体中广泛保持。它们可能代表构建功能长尾巴所需的最小必需蛋白质组。与 SPP1 尾巴构建块同源的蛋白质具有各种附加模块,这些模块极大地多样化了尾巴核心结构,扩大了其结合宿主细胞和将病毒基因组递送到细菌细胞质的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验