Caporale Nicolò, Castaldi Davide, Rigoli Marco Tullio, Cheroni Cristina, Valenti Alessia, Stucchi Sarah, Lessi Manuel, Bulgheresi Davide, Trattaro Sebastiano, Pezzali Martina, Vitriolo Alessandro, Lopez-Tobon Alejandro, Bonfanti Matteo, Ricca Dario, Schmid Katharina T, Heinig Matthias, Theis Fabian J, Villa Carlo Emanuele, Testa Giuseppe
Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
Human Technopole, Milan, Italy.
Nat Methods. 2025 Feb;22(2):358-370. doi: 10.1038/s41592-024-02555-5. Epub 2024 Dec 9.
Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked complementary strategies to multiplex brain organoids by pooling cells from different pluripotent stem cell (PSC) lines either during organoid generation (mosaic models) or before single-cell RNA sequencing (scRNA-seq) library preparation (downstream multiplexing). We have also developed a new computational method, SCanSNP, and a consensus call to deconvolve cell identities, overcoming current criticalities in doublets and low-quality cell identification. We validated both multiplexing methods for charting neurodevelopmental trajectories at high resolution, thus linking specific individuals' trajectories to genetic variation. Finally, we modeled their scalability across different multiplexing combinations and showed that mosaic organoids represent an enabling method for high-throughput settings. Together, this multiplexing suite of experimental and computational methods provides a highly scalable resource for brain disease and neurodiversity modeling.
鉴于需要包含多个个体以及前瞻性群体队列的实验设计,以高分辨率和机械精度剖析人类神经生物学需要在可扩展性方面实现重大飞跃。为了为此奠定基础,我们开发并基准测试了互补策略,通过在类器官生成过程中(镶嵌模型)或在单细胞RNA测序(scRNA-seq)文库制备之前(下游多重化)汇集来自不同多能干细胞(PSC)系的细胞来对脑类器官进行多重化。我们还开发了一种新的计算方法SCanSNP和一种共识调用,以反卷积细胞身份,克服目前在双峰和低质量细胞识别方面的关键问题。我们验证了这两种多重化方法用于高分辨率绘制神经发育轨迹,从而将特定个体的轨迹与遗传变异联系起来。最后,我们对它们在不同多重化组合中的可扩展性进行了建模,并表明镶嵌类器官代表了一种适用于高通量设置的方法。总之,这套实验和计算方法的多重化套件为脑疾病和神经多样性建模提供了一种高度可扩展的资源。