Kim Se-Ho, Dong Kang, Zhao Huan, El-Zoka Ayman A, Zhou Xuyang, Woods Eric V, Giuliani Finn, Manke Ingo, Raabe Dierk, Gault Baptiste
Max-Planck Institut für Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf 40237, Germany.
Institute of Applied Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 14109, Germany.
J Phys Chem Lett. 2022 Sep 15;13(36):8416-8421. doi: 10.1021/acs.jpclett.2c02236. Epub 2022 Sep 1.
To advance the understanding of the degradation of the liquid electrolyte and Si electrode, and their interface, we exploit the latest developments in cryo-atom probe tomography. We evidence Si anode corrosion from the decomposition of the Li salt before charge-discharge cycles even begin. Volume shrinkage during delithiation leads to the development of nanograins from recrystallization in regions left amorphous by the lithiation. The newly created grain boundaries facilitate pulverization of nanoscale Si fragments, and one is found floating in the electrolyte. P is segregated to these grain boundaries, which confirms the decomposition of the electrolyte. As structural defects are bound to assist the nucleation of Li-rich phases in subsequent lithiations and accelerate the electrolyte's decomposition, these insights into the developed nanoscale microstructure interacting with the electrolyte contribute to understanding the self-catalyzed/accelerated degradation Si anodes and can inform new battery designs unaffected by these life-limiting factors.
为了加深对液体电解质和硅电极及其界面降解的理解,我们利用了低温原子探针断层扫描技术的最新进展。我们证明,在充放电循环开始之前,锂盐的分解就会导致硅阳极腐蚀。脱锂过程中的体积收缩导致在锂化后留下的非晶区域通过再结晶形成纳米颗粒。新形成的晶界促进了纳米级硅碎片的粉碎,并且发现有一个漂浮在电解质中。磷偏析到这些晶界,这证实了电解质的分解。由于结构缺陷必然会在随后的锂化过程中辅助富锂相的成核并加速电解质的分解,这些关于与电解质相互作用的已发展纳米级微观结构的见解有助于理解自催化/加速降解的硅阳极,并可为不受这些寿命限制因素影响的新电池设计提供参考。