DEVCOM Army Research Laboratory, Adelphi, Maryland.
Auburn University, Auburn, Alabama.
J Occup Environ Hyg. 2021 Aug;18(8):394-408. doi: 10.1080/15459624.2021.1939877. Epub 2021 Jul 21.
SARS-CoV-2 and other microbes within aerosol particles can be partially shielded from UV radiation. The particles refract and absorb light, and thereby reduce the UV intensity at various locations within the particle. Previously, we demonstrated shielding in calculations of UV intensities within spherical approximations of SARS-CoV-2 virions within spherical particles approximating dried-to-equilibrium respiratory fluids. The purpose of this paper is to extend that work to survival fractions of virions (i.e., fractions of virions that can infect cells) within spherical particles approximating dried respiratory fluids, and to investigate the implications of these calculations for using UV light for disinfection. The particles may be on a surface or in air. Here, the survival fraction () of a set of individual virions illuminated with a UV fluence (, in J/m) is assumed described by () = exp(), where is the UV inactivation rate constant (m/J). The average survival fraction () of the simulated virions in a group of particles is calculated using the energy absorbed by each virion in the particles. The results show that virions within particles of dried respiratory fluids can have larger than do individual virions. For individual virions, and virions within 1-, 5-, and 9-µm particles illuminated (normal incidence) on a surface with 260-nm UV light, the = 0.00005, 0.0155, 0.22, and 0.28, respectively, when 10. The decrease to <10, <10, 0.077, and 0.15, respectively, for = 100. Results also show that illuminating particles with UV beams from widely separated directions can strongly reduce the . These results suggest that the size distributions and optical properties of the dried particles of virion-containing respiratory fluids are likely important to effectively designing and using UV germicidal irradiation systems for microbes in particles. The results suggest the use of reflective surfaces to increase the angles of illumination and decrease the . The results suggest the need for measurements of the of SARS-CoV-2 in particles having compositions and sizes relevant to the modes of disease transmission.
SARS-CoV-2 和其他气溶胶颗粒中的微生物可以部分免受紫外线辐射。颗粒会折射和吸收光线,从而降低颗粒内部各个位置的紫外线强度。此前,我们在 SARS-CoV-2 病毒粒子的球形近似物和干燥到平衡的呼吸道液体的球形颗粒的紫外线强度计算中证明了这种屏蔽作用。本文的目的是将这项工作扩展到干燥呼吸道液体制成的球形颗粒中病毒粒子的存活率(即可以感染细胞的病毒粒子的分数),并研究这些计算对使用紫外线进行消毒的影响。这些颗粒可能在表面上或空气中。此处,一组受紫外线剂量( ,单位为 J/m)照射的单个病毒粒子的存活率( )假设由( )= exp( )描述,其中 为紫外线失活速率常数(m/J)。通过计算每个病毒粒子在颗粒中吸收的能量,可以计算出一组模拟病毒粒子的平均存活率( )。结果表明,干燥呼吸道液体制成的颗粒中的病毒粒子比单个病毒粒子具有更大的 。对于单个病毒粒子以及在 1-、5-和 9-µm 颗粒中(正常入射)照射的病毒粒子,当 10 时, 分别为 0.00005、0.0155、0.22 和 0.28;当 = 100 时, 分别减小到 <10、<10、0.077 和 0.15。结果还表明,用来自不同方向的紫外线光束照射颗粒可以强烈降低 。这些结果表明,载有病毒粒子的干燥呼吸道液体制成的颗粒的尺寸分布和光学性质可能对有效设计和使用紫外线杀菌照射系统杀灭颗粒中的微生物非常重要。结果表明,使用反射表面来增加照射角度并降低 。结果表明,需要对与疾病传播方式相关的组成和尺寸的颗粒中的 SARS-CoV-2 进行 测量。